sarahai commited on
Commit
f92492a
·
verified ·
1 Parent(s): 169ae30

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +47 -0
app.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from keras.models import load_model # TensorFlow is required for Keras to work
2
+ from PIL import Image, ImageOps # Install pillow instead of PIL
3
+ import numpy as np
4
+ import streamlit as st
5
+
6
+ # Disable scientific notation for clarity
7
+ np.set_printoptions(suppress=True)
8
+
9
+ # Load the model
10
+ model = load_model("keras_model.h5", compile=False)
11
+
12
+ # Load the labels
13
+ class_names = open("labels.txt", "r").readlines()
14
+
15
+ st.title("Cat Breed Identifier")
16
+ st.header("Upload an Image to classify")
17
+
18
+ uploaded_file = st.file_uploader("Choose the image...", type=['jpg','jpeg', 'png'])
19
+ if uploaded_file is not None:
20
+ data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
21
+
22
+ # Replace this with the path to your image
23
+ image = Image.open(uploaded_file).convert("RGB")
24
+ st.image(image, caption="Uploaded Image...",use_column_width=True)
25
+
26
+ # resizing the image to be at least 224x224 and then cropping from the center
27
+ size = (224, 224)
28
+ image = ImageOps.fit(image, size, Image.Resampling.LANCZOS)
29
+
30
+ # turn the image into a numpy array
31
+ image_array = np.asarray(image)
32
+
33
+ # Normalize the image
34
+ normalized_image_array = (image_array.astype(np.float32) / 127.5) - 1
35
+
36
+ # Load the image into the array
37
+ data[0] = normalized_image_array
38
+
39
+ # Predicts the model
40
+ prediction = model.predict(data)
41
+ index = np.argmax(prediction)
42
+ class_name = class_names[index]
43
+ confidence_score = prediction[0][index]
44
+
45
+ # Print prediction and confidence score
46
+ st.write(f"Class: {class_name[2:].strip()}")
47
+ st.write(f"Confidence Score: {confidence_score}")