Spaces:
Runtime error
Runtime error
import os | |
import requests | |
import torch | |
from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM | |
class RemoteModelProxy: | |
def __init__(self, model_id): | |
self.model_id = model_id | |
self.tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) | |
# Load the configuration and remove the quantization configuration | |
config = AutoConfig.from_pretrained(model_id, trust_remote_code=True) | |
if hasattr(config, 'quantization_config'): | |
del config.quantization_config | |
self.config = config | |
self.model = AutoModelForCausalLM.from_pretrained(model_id, config=self.config, trust_remote_code=True) | |
def classify_text(self, text): | |
inputs = self.tokenizer(text, return_tensors="pt", padding=True, truncation=True) | |
logits = self.model(**inputs) | |
probabilities = torch.softmax(logits, dim=-1).tolist()[0] | |
predicted_class = torch.argmax(logits, dim=-1).item() | |
return { | |
"Predicted Class": predicted_class, | |
"Probabilities": probabilities | |
} | |
if __name__ == "__main__": | |
model_id = "deepseek-ai/DeepSeek-V3" | |
proxy = RemoteModelProxy(model_id) | |
result = proxy.classify_text("Your input text here") | |
print(result) |