Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
device = "cuda" # or "cpu"
|
| 4 |
+
model_path = "ibm-granite/granite-8b-code-instruct"
|
| 5 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 6 |
+
# drop device_map if running on CPU
|
| 7 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
|
| 8 |
+
model.eval()
|
| 9 |
+
# change input text as desired
|
| 10 |
+
chat = [
|
| 11 |
+
{ "role": "user", "content": "Write a code to find the maximum value in a list of numbers." },
|
| 12 |
+
]
|
| 13 |
+
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
| 14 |
+
# tokenize the text
|
| 15 |
+
input_tokens = tokenizer(chat, return_tensors="pt")
|
| 16 |
+
# transfer tokenized inputs to the device
|
| 17 |
+
for i in input_tokens:
|
| 18 |
+
input_tokens[i] = input_tokens[i].to(device)
|
| 19 |
+
# generate output tokens
|
| 20 |
+
output = model.generate(**input_tokens, max_new_tokens=100)
|
| 21 |
+
# decode output tokens into text
|
| 22 |
+
output = tokenizer.batch_decode(output)
|
| 23 |
+
# loop over the batch to print, in this example the batch size is 1
|
| 24 |
+
for i in output:
|
| 25 |
+
print(i)
|