Spaces:
Runtime error
Runtime error
Commit
·
1f54647
1
Parent(s):
c22dffd
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
|
2 |
+
from diffusers import StableDiffusionInpaintPipeline,StableDiffusionPipeline
|
3 |
+
from PIL import Image
|
4 |
+
import requests
|
5 |
+
|
6 |
+
import cv2
|
7 |
+
import torch
|
8 |
+
import matplotlib.pyplot as plt
|
9 |
+
|
10 |
+
import io
|
11 |
+
import requests
|
12 |
+
from huggingface_hub import notebook_login
|
13 |
+
|
14 |
+
import os
|
15 |
+
|
16 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
os.system('pip install git+https://github.com/huggingface/transformers -q')
|
21 |
+
os.system('pip install git+https://github.com/huggingface/diffusers.git -q')
|
22 |
+
os.system('pip install accelerate')
|
23 |
+
os.system('pip install transformers[sentencepiece]')
|
24 |
+
os.system('pip install Pillow')
|
25 |
+
os.system('pip install gradio')
|
26 |
+
|
27 |
+
|
28 |
+
notebook_login()
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
33 |
+
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
|
34 |
+
|
35 |
+
|
36 |
+
device = "cuda"
|
37 |
+
IPmodel_path = "runwayml/stable-diffusion-inpainting"
|
38 |
+
|
39 |
+
IPpipe = StableDiffusionInpaintPipeline.from_pretrained(
|
40 |
+
IPmodel_path,
|
41 |
+
revision="fp16",
|
42 |
+
torch_dtype=torch.float16,
|
43 |
+
).to(device)
|
44 |
+
|
45 |
+
trans_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
|
46 |
+
trans_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
|
47 |
+
|
48 |
+
|
49 |
+
SDpipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", revision="fp16", torch_dtype=torch.float16, use_auth_token=True).to(device)
|
50 |
+
|
51 |
+
|
52 |
+
def create_mask(image, prompt):
|
53 |
+
inputs = processor(text=[prompt], images=[image], padding="max_length", return_tensors="pt")
|
54 |
+
# predict
|
55 |
+
with torch.no_grad():
|
56 |
+
outputs = model(**inputs)
|
57 |
+
|
58 |
+
preds = outputs.logits
|
59 |
+
|
60 |
+
filename = f"mask.png"
|
61 |
+
plt.imsave(filename,torch.sigmoid(preds))
|
62 |
+
|
63 |
+
gray_image = cv2.cvtColor(cv2.imread(filename), cv2.COLOR_BGR2GRAY)
|
64 |
+
|
65 |
+
(thresh, bw_image) = cv2.threshold(gray_image, 100, 255, cv2.THRESH_BINARY)
|
66 |
+
|
67 |
+
# For debugging only:
|
68 |
+
# cv2.imwrite(filename,bw_image)
|
69 |
+
|
70 |
+
# fix color format
|
71 |
+
cv2.cvtColor(bw_image, cv2.COLOR_BGR2RGB)
|
72 |
+
|
73 |
+
mask = cv2.bitwise_not(bw_image)
|
74 |
+
cv2.imwrite(filename, mask)
|
75 |
+
|
76 |
+
return Image.open('mask.png')
|
77 |
+
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
def generate_image(image, product_name, target_name):
|
82 |
+
mask = create_mask(image, product_name)
|
83 |
+
image = image.resize((512, 512))
|
84 |
+
mask = mask.resize((512,512))
|
85 |
+
guidance_scale=8
|
86 |
+
#guidance_scale=16
|
87 |
+
num_samples = 4
|
88 |
+
|
89 |
+
prompt = target_name
|
90 |
+
generator = torch.Generator(device="cuda").manual_seed(22) # change the seed to get different results
|
91 |
+
|
92 |
+
im = IPpipe(
|
93 |
+
prompt=prompt,
|
94 |
+
image=image,
|
95 |
+
mask_image=mask,
|
96 |
+
guidance_scale=guidance_scale,
|
97 |
+
generator=generator,
|
98 |
+
num_images_per_prompt=num_samples,
|
99 |
+
).images
|
100 |
+
|
101 |
+
return im
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
def translate_sentence(article, source, target):
|
106 |
+
if target == 'eng_Latn':
|
107 |
+
return article
|
108 |
+
translator = pipeline('translation', model=trans_model, tokenizer=trans_tokenizer, src_lang=source, tgt_lang=target, device=0)
|
109 |
+
output = translator(article, max_length=400)
|
110 |
+
output = output[0]['translation_text']
|
111 |
+
return output
|
112 |
+
|
113 |
+
|
114 |
+
codes_as_string = codes_as_string.split('\n')
|
115 |
+
|
116 |
+
flores_codes = {}
|
117 |
+
for code in codes_as_string:
|
118 |
+
lang, lang_code = code.split('\t')
|
119 |
+
flores_codes[lang] = lang_code
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
import gradio as gr
|
124 |
+
import gc
|
125 |
+
gc.collect()
|
126 |
+
%env PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:256
|
127 |
+
image_label = 'Please upload the image (optional)'
|
128 |
+
extract_label = 'Specify what need to be extracted from the above image'
|
129 |
+
prompt_label = 'Specify the description of image to be generated'
|
130 |
+
button_label = "Proceed"
|
131 |
+
output_label = "Generations"
|
132 |
+
|
133 |
+
|
134 |
+
shot_services = ['close-up', 'extreme-closeup', 'POV','medium', 'long']
|
135 |
+
shot_label = 'Choose the shot type'
|
136 |
+
|
137 |
+
style_services = ['polaroid', 'monochrome', 'long exposure','color splash', 'Tilt shift']
|
138 |
+
style_label = 'Choose the style type'
|
139 |
+
|
140 |
+
lighting_services = ['soft', 'ambivalent', 'ring','sun', 'cinematic']
|
141 |
+
lighting_label = 'Choose the lighting type'
|
142 |
+
|
143 |
+
context_services = ['indoor', 'outdoor', 'at night','in the park', 'in the beach','studio']
|
144 |
+
context_label = 'Choose the context'
|
145 |
+
|
146 |
+
lens_services = ['wide angle', 'telephoto', '24 mm','EF 70mm', 'Bokeh']
|
147 |
+
lens_label = 'Choose the lens type'
|
148 |
+
|
149 |
+
device_services = ['iphone', 'CCTV', 'Nikon ZFX','Canon', 'Gopro']
|
150 |
+
device_label = 'Choose the device type'
|
151 |
+
|
152 |
+
|
153 |
+
def change_lang(choice):
|
154 |
+
global lang_choice
|
155 |
+
lang_choice = choice
|
156 |
+
new_image_label = translate_sentence(image_label, "english", choice)
|
157 |
+
return [gr.update(visible=True, label=translate_sentence(image_label, flores_codes["English"],flores_codes[choice])),
|
158 |
+
gr.update(visible=True, label=translate_sentence(extract_label, flores_codes["English"],flores_codes[choice])),
|
159 |
+
gr.update(visible=True, label=translate_sentence(prompt_label, flores_codes["English"],flores_codes[choice])),
|
160 |
+
gr.update(visible=True, value=translate_sentence(button_label, flores_codes["English"],flores_codes[choice])),
|
161 |
+
gr.update(visible=True, label=translate_sentence(button_label, flores_codes["English"],flores_codes[choice])),
|
162 |
+
]
|
163 |
+
|
164 |
+
def add_to_prompt(prompt_text,shot_radio, style_radio, lighting_radio, context_radio, lens_radio, device_radio ):
|
165 |
+
if shot_radio != '':
|
166 |
+
prompt_text += ","+shot_radio
|
167 |
+
if style_radio != '':
|
168 |
+
prompt_text += ","+style_radio
|
169 |
+
if lighting_radio != '':
|
170 |
+
prompt_text += ","+lighting_radio
|
171 |
+
if context_radio != '':
|
172 |
+
prompt_text += ","+ context_radio
|
173 |
+
if lens_radio != '':
|
174 |
+
prompt_text += ","+ lens_radio
|
175 |
+
if device_radio != '':
|
176 |
+
prompt_text += ","+ device_radio
|
177 |
+
return prompt_text
|
178 |
+
|
179 |
+
def proceed_with_generation(input_file, extract_text, prompt_text, shot_radio, style_radio, lighting_radio, context_radio, lens_radio, device_radio):
|
180 |
+
if extract_text == "" or input_file == "":
|
181 |
+
translated_prompt = translate_sentence(prompt_text, flores_codes[lang_choice], flores_codes["English"])
|
182 |
+
translated_prompt = add_to_prompt(translated_prompt,shot_radio, style_radio, lighting_radio, context_radio, lens_radio, device_radio)
|
183 |
+
print(translated_prompt)
|
184 |
+
output = SDpipe(translated_prompt, height=512, width=512, num_images_per_prompt=4, device=0)
|
185 |
+
return output.images
|
186 |
+
elif extract_text != "" and input_file == "" and prompt_text !='':
|
187 |
+
translated_prompt = translate_sentence(prompt_text, flores_codes[lang_choice], flores_codes["English"])
|
188 |
+
translated_prompt = add_to_prompt(translated_prompt,shot_radio, style_radio, lighting_radio, context_radio, lens_radio, device_radio)
|
189 |
+
print(translated_prompt)
|
190 |
+
translated_extract = translate_sentence(extract_text, flores_codes[lang_choice], flores_codes["English"])
|
191 |
+
print(translated_extract)
|
192 |
+
output = generate_image(Image.fromarray(input_file), translated_extract, translated_prompt)
|
193 |
+
return output
|
194 |
+
else:
|
195 |
+
raise gr.Error("Please fill all details for guided image or atleast promt for free image rendition !")
|
196 |
+
|
197 |
+
|
198 |
+
|
199 |
+
with gr.Blocks() as demo:
|
200 |
+
|
201 |
+
lang_option = gr.Dropdown(list(flores_codes.keys()), default='English', label='Please Select your Language')
|
202 |
+
|
203 |
+
with gr.Row():
|
204 |
+
input_file = gr.Image(interactive = True, label=image_label, visible=False, shape=(512,512))
|
205 |
+
extract_text = gr.Textbox(label= extract_label, lines=1, interactive = True, visible = False)
|
206 |
+
prompt_text = gr.Textbox(label= prompt_label, lines=1, interactive = True, visible = False)
|
207 |
+
|
208 |
+
with gr.Accordion("Advanced Options"):
|
209 |
+
shot_radio = gr.Radio(shot_services , label=shot_label)
|
210 |
+
style_radio = gr.Radio(style_services , label=style_label)
|
211 |
+
lighting_radio = gr.Radio(lighting_services , label=lighting_label)
|
212 |
+
context_radio = gr.Radio(context_services , label=context_label)
|
213 |
+
lens_radio = gr.Radio(lens_services , label=lens_label)
|
214 |
+
device_radio = gr.Radio(device_services , label=device_label)
|
215 |
+
|
216 |
+
button = gr.Button(value = button_label , visible = False)
|
217 |
+
|
218 |
+
with gr.Row():
|
219 |
+
output_gallery = gr.Gallery(label = output_label, visible= False)
|
220 |
+
|
221 |
+
|
222 |
+
|
223 |
+
|
224 |
+
lang_option.change(fn=change_lang, inputs=lang_option, outputs=[input_file, extract_text, prompt_text, button, output_gallery])
|
225 |
+
button.click( proceed_with_generation, [input_file, extract_text, prompt_text, shot_radio, style_radio, lighting_radio, context_radio, lens_radio, device_radio], [output_gallery])
|
226 |
+
|
227 |
+
|
228 |
+
demo.launch(debug=True, share=True)
|