santhoshs commited on
Commit
1f0895f
·
1 Parent(s): 6ab77d4

Update latest app

Browse files
Files changed (1) hide show
  1. app.py +23 -11
app.py CHANGED
@@ -1,10 +1,15 @@
1
  from datasets import load_dataset
2
- from langchain_community.document_loaders.csv_loader import CSVLoader
3
- from langchain.text_splitter import RecursiveCharacterTextSplitter
4
  from langchain.embeddings import CacheBackedEmbeddings
5
  from langchain.storage import LocalFileStore
6
- from langchain_openai import OpenAIEmbeddings
 
 
 
 
 
7
  from langchain_community.vectorstores import FAISS
 
 
8
 
9
  dataset = load_dataset('ShubhamChoksi/IMDB_Movies')
10
  dataset_dict = dataset
@@ -31,12 +36,19 @@ vector_file = "local_vector"
31
  vector_store = FAISS.from_documents(chunked_documents, cached_embedder)
32
  vector_store.save_local(vector_file)
33
 
34
- query = "What are some good sci-fi movies from the 1980s?"
35
-
36
- embedded_query = embedding_model.embed_query(query)
37
-
38
- similar_documents = vector_store.similarity_search_by_vector(embedded_query) # TODO: How do we do a similarity search to find documents similar to our query?
39
-
40
- for page in similar_documents:
41
- print(page.page_content)
 
 
 
 
 
42
 
 
 
 
1
  from datasets import load_dataset
 
 
2
  from langchain.embeddings import CacheBackedEmbeddings
3
  from langchain.storage import LocalFileStore
4
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
5
+ from langchain_core.runnables.base import RunnableSequence
6
+ from langchain_core.runnables.passthrough import RunnablePassthrough
7
+ from langchain_core.output_parsers import StrOutputParser
8
+ from langchain_core.prompts import ChatPromptTemplate
9
+ from langchain_community.document_loaders.csv_loader import CSVLoader
10
  from langchain_community.vectorstores import FAISS
11
+ from langchain_openai import OpenAIEmbeddings
12
+ from langchain_openai import ChatOpenAI
13
 
14
  dataset = load_dataset('ShubhamChoksi/IMDB_Movies')
15
  dataset_dict = dataset
 
36
  vector_store = FAISS.from_documents(chunked_documents, cached_embedder)
37
  vector_store.save_local(vector_file)
38
 
39
+ prompt_template = ChatPromptTemplate.from_template(
40
+ "You are a movie recommendation system, for a given {query} find recommendations from {content}."
41
+ )
42
+ retriever = vector_store.as_retriever()
43
+ chat_model = ChatOpenAI(model="gpt-4o", temperature=0.2, openai_api_key=openai_api_key)
44
+ parser = StrOutputParser()
45
+
46
+ runnable_chain = (
47
+ {"query": RunnablePassthrough(), "content": retriever}
48
+ | prompt_template
49
+ | chat_model
50
+ | StrOutputParser()
51
+ )
52
 
53
+ output_chunks = runnable_chain.invoke(query)
54
+ print(''.join(output_chunks))