Spaces:
Running
Running
Adding app files
Browse files- .gradio/certificate.pem +31 -0
- app.py +144 -0
- requirements.txt +91 -0
.gradio/certificate.pem
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
-----BEGIN CERTIFICATE-----
|
2 |
+
MIIFazCCA1OgAwIBAgIRAIIQz7DSQONZRGPgu2OCiwAwDQYJKoZIhvcNAQELBQAw
|
3 |
+
TzELMAkGA1UEBhMCVVMxKTAnBgNVBAoTIEludGVybmV0IFNlY3VyaXR5IFJlc2Vh
|
4 |
+
cmNoIEdyb3VwMRUwEwYDVQQDEwxJU1JHIFJvb3QgWDEwHhcNMTUwNjA0MTEwNDM4
|
5 |
+
WhcNMzUwNjA0MTEwNDM4WjBPMQswCQYDVQQGEwJVUzEpMCcGA1UEChMgSW50ZXJu
|
6 |
+
ZXQgU2VjdXJpdHkgUmVzZWFyY2ggR3JvdXAxFTATBgNVBAMTDElTUkcgUm9vdCBY
|
7 |
+
MTCCAiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIBAK3oJHP0FDfzm54rVygc
|
8 |
+
h77ct984kIxuPOZXoHj3dcKi/vVqbvYATyjb3miGbESTtrFj/RQSa78f0uoxmyF+
|
9 |
+
0TM8ukj13Xnfs7j/EvEhmkvBioZxaUpmZmyPfjxwv60pIgbz5MDmgK7iS4+3mX6U
|
10 |
+
A5/TR5d8mUgjU+g4rk8Kb4Mu0UlXjIB0ttov0DiNewNwIRt18jA8+o+u3dpjq+sW
|
11 |
+
T8KOEUt+zwvo/7V3LvSye0rgTBIlDHCNAymg4VMk7BPZ7hm/ELNKjD+Jo2FR3qyH
|
12 |
+
B5T0Y3HsLuJvW5iB4YlcNHlsdu87kGJ55tukmi8mxdAQ4Q7e2RCOFvu396j3x+UC
|
13 |
+
B5iPNgiV5+I3lg02dZ77DnKxHZu8A/lJBdiB3QW0KtZB6awBdpUKD9jf1b0SHzUv
|
14 |
+
KBds0pjBqAlkd25HN7rOrFleaJ1/ctaJxQZBKT5ZPt0m9STJEadao0xAH0ahmbWn
|
15 |
+
OlFuhjuefXKnEgV4We0+UXgVCwOPjdAvBbI+e0ocS3MFEvzG6uBQE3xDk3SzynTn
|
16 |
+
jh8BCNAw1FtxNrQHusEwMFxIt4I7mKZ9YIqioymCzLq9gwQbooMDQaHWBfEbwrbw
|
17 |
+
qHyGO0aoSCqI3Haadr8faqU9GY/rOPNk3sgrDQoo//fb4hVC1CLQJ13hef4Y53CI
|
18 |
+
rU7m2Ys6xt0nUW7/vGT1M0NPAgMBAAGjQjBAMA4GA1UdDwEB/wQEAwIBBjAPBgNV
|
19 |
+
HRMBAf8EBTADAQH/MB0GA1UdDgQWBBR5tFnme7bl5AFzgAiIyBpY9umbbjANBgkq
|
20 |
+
hkiG9w0BAQsFAAOCAgEAVR9YqbyyqFDQDLHYGmkgJykIrGF1XIpu+ILlaS/V9lZL
|
21 |
+
ubhzEFnTIZd+50xx+7LSYK05qAvqFyFWhfFQDlnrzuBZ6brJFe+GnY+EgPbk6ZGQ
|
22 |
+
3BebYhtF8GaV0nxvwuo77x/Py9auJ/GpsMiu/X1+mvoiBOv/2X/qkSsisRcOj/KK
|
23 |
+
NFtY2PwByVS5uCbMiogziUwthDyC3+6WVwW6LLv3xLfHTjuCvjHIInNzktHCgKQ5
|
24 |
+
ORAzI4JMPJ+GslWYHb4phowim57iaztXOoJwTdwJx4nLCgdNbOhdjsnvzqvHu7Ur
|
25 |
+
TkXWStAmzOVyyghqpZXjFaH3pO3JLF+l+/+sKAIuvtd7u+Nxe5AW0wdeRlN8NwdC
|
26 |
+
jNPElpzVmbUq4JUagEiuTDkHzsxHpFKVK7q4+63SM1N95R1NbdWhscdCb+ZAJzVc
|
27 |
+
oyi3B43njTOQ5yOf+1CceWxG1bQVs5ZufpsMljq4Ui0/1lvh+wjChP4kqKOJ2qxq
|
28 |
+
4RgqsahDYVvTH9w7jXbyLeiNdd8XM2w9U/t7y0Ff/9yi0GE44Za4rF2LN9d11TPA
|
29 |
+
mRGunUHBcnWEvgJBQl9nJEiU0Zsnvgc/ubhPgXRR4Xq37Z0j4r7g1SgEEzwxA57d
|
30 |
+
emyPxgcYxn/eR44/KJ4EBs+lVDR3veyJm+kXQ99b21/+jh5Xos1AnX5iItreGCc=
|
31 |
+
-----END CERTIFICATE-----
|
app.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import numpy as np
|
6 |
+
import torchvision.transforms as T
|
7 |
+
from PIL import Image, ImageDraw, ImageFont
|
8 |
+
import gradio as gr
|
9 |
+
from ultralytics import YOLO
|
10 |
+
from transformers import ResNetModel
|
11 |
+
import cv2
|
12 |
+
|
13 |
+
class FlakeLayerClassifier(nn.Module):
|
14 |
+
def __init__(self, num_materials, material_dim, num_classes=4, dropout_prob=0.1, freeze_cnn=False):
|
15 |
+
super().__init__()
|
16 |
+
self.cnn = ResNetModel.from_pretrained("microsoft/resnet-18")
|
17 |
+
if freeze_cnn:
|
18 |
+
for p in self.cnn.parameters():
|
19 |
+
p.requires_grad = False
|
20 |
+
|
21 |
+
img_feat_dim = self.cnn.config.hidden_sizes[-1]
|
22 |
+
self.material_embedding = nn.Embedding(num_materials, material_dim)
|
23 |
+
self.dropout = nn.Dropout(dropout_prob)
|
24 |
+
|
25 |
+
self.fc_img = nn.Sequential(
|
26 |
+
nn.Linear(img_feat_dim, img_feat_dim),
|
27 |
+
nn.ReLU(inplace=True),
|
28 |
+
self.dropout,
|
29 |
+
nn.Linear(img_feat_dim, num_classes)
|
30 |
+
)
|
31 |
+
|
32 |
+
combined_dim = img_feat_dim + material_dim
|
33 |
+
self.fc_comb = nn.Sequential(
|
34 |
+
nn.Linear(combined_dim, combined_dim),
|
35 |
+
nn.ReLU(inplace=True),
|
36 |
+
self.dropout,
|
37 |
+
nn.Linear(combined_dim, num_classes)
|
38 |
+
)
|
39 |
+
|
40 |
+
def forward(self, pixel_values, material=None):
|
41 |
+
outputs = self.cnn(pixel_values=pixel_values)
|
42 |
+
img_feats = outputs.pooler_output.view(outputs.pooler_output.size(0), -1)
|
43 |
+
|
44 |
+
if material is None:
|
45 |
+
return self.fc_img(img_feats)
|
46 |
+
|
47 |
+
mat_emb = self.material_embedding(material)
|
48 |
+
combined = torch.cat([img_feats, mat_emb], dim=1)
|
49 |
+
return self.fc_comb(combined)
|
50 |
+
|
51 |
+
def calibration(source_img, target_img):
|
52 |
+
source_lab = cv2.cvtColor(source_img, cv2.COLOR_BGR2LAB)
|
53 |
+
target_lab = cv2.cvtColor(target_img, cv2.COLOR_BGR2LAB)
|
54 |
+
|
55 |
+
for i in range(3):
|
56 |
+
src_mean, src_std = cv2.meanStdDev(source_lab[:, :, i])
|
57 |
+
tgt_mean, tgt_std = cv2.meanStdDev(target_lab[:, :, i])
|
58 |
+
|
59 |
+
target_lab[:, :, i] = (
|
60 |
+
(target_lab[:, :, i] - tgt_mean) * (src_std / tgt_std) + src_mean
|
61 |
+
).clip(0, 255)
|
62 |
+
|
63 |
+
corrected_img = cv2.cvtColor(target_lab, cv2.COLOR_LAB2BGR)
|
64 |
+
return corrected_img.astype(np.uint8)
|
65 |
+
|
66 |
+
|
67 |
+
device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
|
68 |
+
print(f"Using device: {device}")
|
69 |
+
|
70 |
+
# Load YOLO detector
|
71 |
+
#yolo = YOLO("/home/sankalp/flake_classification/models/best.pt")
|
72 |
+
#yolo = YOLO("/home/sankalp/yolo_flake_detection/yolo11n_synthetic_runs/exp1/weights/best.pt")
|
73 |
+
yolo = YOLO("/home/sankalp/yolo_flake_detection/yolo_runs/yolo11l_flake_runs/weights/best.pt")
|
74 |
+
yolo.conf = 0.5
|
75 |
+
|
76 |
+
# Load classifier weights
|
77 |
+
ckpt = torch.load(
|
78 |
+
"/home/sankalp/flake_classification/models/flake_classifier.pth",
|
79 |
+
map_location=device
|
80 |
+
)
|
81 |
+
num_classes = len(ckpt["class_to_idx"])
|
82 |
+
classifier = FlakeLayerClassifier(
|
83 |
+
num_materials=num_classes,
|
84 |
+
material_dim=64,
|
85 |
+
num_classes=num_classes,
|
86 |
+
dropout_prob=0.1,
|
87 |
+
freeze_cnn=False
|
88 |
+
).to(device)
|
89 |
+
classifier.load_state_dict(ckpt["model_state_dict"])
|
90 |
+
classifier.eval()
|
91 |
+
|
92 |
+
# Image processing transforms
|
93 |
+
clf_tf = T.Compose([
|
94 |
+
T.Resize((224, 224)),
|
95 |
+
T.ToTensor(),
|
96 |
+
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
97 |
+
])
|
98 |
+
|
99 |
+
try:
|
100 |
+
FONT = ImageFont.truetype("arial.ttf", 20)
|
101 |
+
except IOError:
|
102 |
+
FONT = ImageFont.load_default()
|
103 |
+
|
104 |
+
# Inference + drawing
|
105 |
+
def detect_and_classify(image: Image.Image):
|
106 |
+
#image = calibration(
|
107 |
+
# np.array(Image.open("/home/sankalp/gradio_flake_app/quantum-flake-pipeline/template/image.png")),
|
108 |
+
#np.array(image.convert("RGB")),
|
109 |
+
#)
|
110 |
+
#image = Image.fromarray(image)
|
111 |
+
img_rgb = np.array(image.convert("RGB"))
|
112 |
+
img_bgr = img_rgb[:, :, ::-1]
|
113 |
+
results = yolo(img_bgr, device=str(device))
|
114 |
+
boxes = results[0].boxes.xyxy.cpu().numpy()
|
115 |
+
scores = results[0].boxes.conf.cpu().numpy()
|
116 |
+
|
117 |
+
draw = ImageDraw.Draw(image)
|
118 |
+
for (x1, y1, x2, y2), conf in zip(boxes, scores):
|
119 |
+
crop = image.crop((x1, y1, x2, y2))
|
120 |
+
inp = clf_tf(crop).unsqueeze(0).to(device) # (1,C,H,W)
|
121 |
+
|
122 |
+
with torch.no_grad():
|
123 |
+
logits = classifier(pixel_values=inp)
|
124 |
+
pred = logits.argmax(1).item()
|
125 |
+
prob = F.softmax(logits, dim=1)[0, pred].item()
|
126 |
+
|
127 |
+
label = f"Layer {pred+1} ({prob:.2f})"
|
128 |
+
# draw
|
129 |
+
draw.rectangle([x1, y1, x2, y2], outline="red", width=2)
|
130 |
+
draw.text((x1, max(0, y1-18)), label, fill="red", font=FONT)
|
131 |
+
|
132 |
+
return image
|
133 |
+
|
134 |
+
# Gradio UI
|
135 |
+
demo = gr.Interface(
|
136 |
+
fn=detect_and_classify,
|
137 |
+
inputs=gr.Image(type="pil", label="Upload Flake Image"),
|
138 |
+
outputs=gr.Image(type="pil", label="Annotated Output"),
|
139 |
+
title="Flake Detection + Layer Classification",
|
140 |
+
description="Upload an image → YOLO finds flakes → ResNet-18 head classifies their layer.",
|
141 |
+
)
|
142 |
+
|
143 |
+
if __name__ == "__main__":
|
144 |
+
demo.launch(share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiofiles==24.1.0
|
2 |
+
annotated-types==0.7.0
|
3 |
+
anyio==4.9.0
|
4 |
+
certifi==2025.6.15
|
5 |
+
charset-normalizer==3.4.2
|
6 |
+
click==8.2.1
|
7 |
+
contourpy==1.3.2
|
8 |
+
cycler==0.12.1
|
9 |
+
fastapi==0.115.13
|
10 |
+
ffmpy==0.6.0
|
11 |
+
filelock==3.18.0
|
12 |
+
fonttools==4.58.4
|
13 |
+
fsspec==2025.5.1
|
14 |
+
gradio==5.34.2
|
15 |
+
gradio_client==1.10.3
|
16 |
+
groovy==0.1.2
|
17 |
+
h11==0.16.0
|
18 |
+
hf-xet==1.1.5
|
19 |
+
httpcore==1.0.9
|
20 |
+
httpx==0.28.1
|
21 |
+
huggingface-hub==0.33.1
|
22 |
+
idna==3.10
|
23 |
+
Jinja2==3.1.6
|
24 |
+
kiwisolver==1.4.8
|
25 |
+
markdown-it-py==3.0.0
|
26 |
+
MarkupSafe==3.0.2
|
27 |
+
matplotlib==3.10.3
|
28 |
+
mdurl==0.1.2
|
29 |
+
mpmath==1.3.0
|
30 |
+
networkx==3.5
|
31 |
+
numpy==2.3.1
|
32 |
+
nvidia-cublas-cu12==12.6.4.1
|
33 |
+
nvidia-cuda-cupti-cu12==12.6.80
|
34 |
+
nvidia-cuda-nvrtc-cu12==12.6.77
|
35 |
+
nvidia-cuda-runtime-cu12==12.6.77
|
36 |
+
nvidia-cudnn-cu12==9.5.1.17
|
37 |
+
nvidia-cufft-cu12==11.3.0.4
|
38 |
+
nvidia-cufile-cu12==1.11.1.6
|
39 |
+
nvidia-curand-cu12==10.3.7.77
|
40 |
+
nvidia-cusolver-cu12==11.7.1.2
|
41 |
+
nvidia-cusparse-cu12==12.5.4.2
|
42 |
+
nvidia-cusparselt-cu12==0.6.3
|
43 |
+
nvidia-nccl-cu12==2.26.2
|
44 |
+
nvidia-nvjitlink-cu12==12.6.85
|
45 |
+
nvidia-nvtx-cu12==12.6.77
|
46 |
+
opencv-python==4.11.0.86
|
47 |
+
orjson==3.10.18
|
48 |
+
packaging==25.0
|
49 |
+
pandas==2.3.0
|
50 |
+
pillow==11.2.1
|
51 |
+
psutil==7.0.0
|
52 |
+
py-cpuinfo==9.0.0
|
53 |
+
pydantic==2.11.7
|
54 |
+
pydantic_core==2.33.2
|
55 |
+
pydub==0.25.1
|
56 |
+
Pygments==2.19.2
|
57 |
+
pyparsing==3.2.3
|
58 |
+
python-dateutil==2.9.0.post0
|
59 |
+
python-multipart==0.0.20
|
60 |
+
pytz==2025.2
|
61 |
+
PyYAML==6.0.2
|
62 |
+
regex==2024.11.6
|
63 |
+
requests==2.32.4
|
64 |
+
rich==14.0.0
|
65 |
+
ruff==0.12.0
|
66 |
+
safehttpx==0.1.6
|
67 |
+
safetensors==0.5.3
|
68 |
+
scipy==1.16.0
|
69 |
+
semantic-version==2.10.0
|
70 |
+
shellingham==1.5.4
|
71 |
+
six==1.17.0
|
72 |
+
sniffio==1.3.1
|
73 |
+
starlette==0.46.2
|
74 |
+
sympy==1.14.0
|
75 |
+
tokenizers==0.21.2
|
76 |
+
tomlkit==0.13.3
|
77 |
+
torch==2.7.1
|
78 |
+
torchaudio==2.7.1+cpu
|
79 |
+
torchvision==0.22.1
|
80 |
+
tqdm==4.67.1
|
81 |
+
transformers==4.52.4
|
82 |
+
triton==3.3.1
|
83 |
+
typer==0.16.0
|
84 |
+
typing-inspection==0.4.1
|
85 |
+
typing_extensions==4.14.0
|
86 |
+
tzdata==2025.2
|
87 |
+
ultralytics==8.3.159
|
88 |
+
ultralytics-thop==2.0.14
|
89 |
+
urllib3==2.5.0
|
90 |
+
uvicorn==0.34.3
|
91 |
+
websockets==15.0.1
|