Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- app.py +74 -0
- crop_disease_model.pth +3 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
from ultralytics import YOLO
|
4 |
+
from flask import Flask, request, jsonify
|
5 |
+
from flask_cors import CORS # CORS for frontend access
|
6 |
+
from PIL import Image
|
7 |
+
import io
|
8 |
+
|
9 |
+
# Initialize Flask App
|
10 |
+
app = Flask("Plant Disease Detection")
|
11 |
+
CORS(app) # Allow frontend requests from any origin
|
12 |
+
|
13 |
+
# Load YOLO Model
|
14 |
+
model = YOLO('crop_disease_model.pt')
|
15 |
+
|
16 |
+
# Disease Remedies Dictionary
|
17 |
+
disease_remedies = {
|
18 |
+
"bacterial spot": "Remove infected plant debris, use copper-based fungicides.",
|
19 |
+
"early blight": "Apply fungicides, practice crop rotation.",
|
20 |
+
"healthy": "No action needed.",
|
21 |
+
"late blight": "Remove infected plants, use fungicides.",
|
22 |
+
"leaf miner": "Use insecticidal sprays, remove affected leaves.",
|
23 |
+
"leaf mold": "Improve air circulation, use fungicides.",
|
24 |
+
"mosaic virus": "Remove infected plants, control aphids.",
|
25 |
+
"septoria": "Remove infected leaves, use fungicides.",
|
26 |
+
"spider mites": "Use miticides, introduce beneficial insects.",
|
27 |
+
"yellow leaf curl virus": "Remove infected plants, control whiteflies."
|
28 |
+
}
|
29 |
+
|
30 |
+
# Function to process image
|
31 |
+
def process_image(image):
|
32 |
+
img = cv2.resize(image, (512, 512)) # Resize to match model input
|
33 |
+
return img
|
34 |
+
|
35 |
+
# Function for disease detection
|
36 |
+
def plant_disease_detect(img):
|
37 |
+
detect_result = model(img)
|
38 |
+
detect_img = detect_result[0].plot()
|
39 |
+
detections = detect_result[0].boxes.data.tolist()
|
40 |
+
classes = [model.names[int(detection[5])] for detection in detections]
|
41 |
+
return detect_img, classes
|
42 |
+
|
43 |
+
# Flask API Endpoint
|
44 |
+
@app.route("/predict", methods=["GET", "POST"])
|
45 |
+
def predict():
|
46 |
+
if request.method == "GET":
|
47 |
+
return jsonify({"message": "Use POST request to send an image for prediction."}), 400
|
48 |
+
|
49 |
+
if "file" not in request.files:
|
50 |
+
return jsonify({"error": "No file uploaded"}), 400
|
51 |
+
|
52 |
+
file = request.files["file"]
|
53 |
+
image = Image.open(io.BytesIO(file.read())).convert("RGB")
|
54 |
+
image = np.array(image)
|
55 |
+
original_size = (image.shape[1], image.shape[0])
|
56 |
+
|
57 |
+
# Process image & detect disease
|
58 |
+
processed_img = process_image(image)
|
59 |
+
detect_img, classes = plant_disease_detect(processed_img)
|
60 |
+
|
61 |
+
# Get unique classes with remedies
|
62 |
+
unique_classes = list(set(classes))
|
63 |
+
class_table = [{"disease": cls, "remedy": disease_remedies.get(cls.lower(), "No remedy available")} for cls in unique_classes]
|
64 |
+
|
65 |
+
return jsonify({"detections": class_table})
|
66 |
+
|
67 |
+
# Home Route
|
68 |
+
@app.route("/", methods=["GET"])
|
69 |
+
def home():
|
70 |
+
return jsonify({"message": "Welcome to the Plant Disease Detection API!"})
|
71 |
+
|
72 |
+
# Run Flask App
|
73 |
+
if __name__ == "__main__":
|
74 |
+
app.run(host="0.0.0.0", port=5000, debug=True)
|
crop_disease_model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f91ab640f21b218dd2da3c0d39145ad658718c67a912b3e4da46e1b3ade53d63
|
3 |
+
size 93867804
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
ultralytics
|
3 |
+
gradio
|
4 |
+
opencv-python
|