Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,32 +1,31 @@
|
|
1 |
import gradio as gr
|
2 |
import pickle
|
3 |
import numpy as np
|
|
|
4 |
import os
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
def __init__(self, model_path):
|
9 |
-
if not os.path.exists(model_path):
|
10 |
-
raise FileNotFoundError(f"Model file not found at {model_path}")
|
11 |
-
with open(model_path, 'rb') as file:
|
12 |
-
self.model = pickle.load(file)
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
# Prepare input features
|
17 |
-
features = np.array([[feature1, feature2, feature3]])
|
18 |
-
prediction = self.model.predict(features)
|
19 |
-
return f"Predicted Crop Yield: {float(prediction[0]):.2f}"
|
20 |
-
except Exception as e:
|
21 |
-
return f"Prediction failed: {str(e)}"
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
# Gradio Interface
|
28 |
demo = gr.Interface(
|
29 |
-
fn=
|
30 |
inputs=[
|
31 |
gr.Number(label="Feature 1"),
|
32 |
gr.Number(label="Feature 2"),
|
@@ -34,8 +33,8 @@ demo = gr.Interface(
|
|
34 |
],
|
35 |
outputs=gr.Textbox(label="Prediction Result"),
|
36 |
title="Crop Yield Prediction",
|
37 |
-
description="Enter the values
|
38 |
)
|
39 |
|
40 |
if __name__ == "__main__":
|
41 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import pickle
|
3 |
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
import os
|
6 |
|
7 |
+
# Load Model
|
8 |
+
model_path = "crop_yield_model.pkl"
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
if not os.path.exists(model_path):
|
11 |
+
raise FileNotFoundError(f"Model file not found at {model_path}")
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
with open(model_path, "rb") as file:
|
14 |
+
model = pickle.load(file)
|
15 |
+
|
16 |
+
# Prediction Function
|
17 |
+
def predict_yield(feature1, feature2, feature3):
|
18 |
+
try:
|
19 |
+
# Prepare input
|
20 |
+
features = np.array([[feature1, feature2, feature3]])
|
21 |
+
prediction = model.predict(features)
|
22 |
+
return f"Predicted Crop Yield: {float(prediction[0]):.2f}"
|
23 |
+
except Exception as e:
|
24 |
+
return f"Error in prediction: {str(e)}"
|
25 |
|
26 |
# Gradio Interface
|
27 |
demo = gr.Interface(
|
28 |
+
fn=predict_yield,
|
29 |
inputs=[
|
30 |
gr.Number(label="Feature 1"),
|
31 |
gr.Number(label="Feature 2"),
|
|
|
33 |
],
|
34 |
outputs=gr.Textbox(label="Prediction Result"),
|
35 |
title="Crop Yield Prediction",
|
36 |
+
description="Enter the feature values to predict crop yield.",
|
37 |
)
|
38 |
|
39 |
if __name__ == "__main__":
|
40 |
+
demo.launch()
|