sankalp2606's picture
Update app.py
a723b83 verified
import gradio as gr
import pickle
import numpy as np
import pandas as pd
import os
# Load Model
model_path = "crop_yield_model.pkl"
if not os.path.exists(model_path):
raise FileNotFoundError(f"Model file not found at {model_path}")
with open(model_path, "rb") as file:
model = pickle.load(file)
# Example mapping for categorical variables (if encoded during training)
season_mapping = {"Kharif": 0, "Rabi": 1, "Zaid": 2}
district_mapping = {"District A": 0, "District B": 1, "District C": 2}
crop_mapping = {"Wheat": 0, "Rice": 1, "Maize": 2, "Sugarcane": 3}
# Prediction Function
def predict_yield(area, season, district, crop):
try:
# Convert categorical inputs to numerical if necessary
season_encoded = season_mapping.get(season, -1)
district_encoded = district_mapping.get(district, -1)
crop_encoded = crop_mapping.get(crop, -1)
if -1 in [season_encoded, district_encoded, crop_encoded]:
return "Error: Invalid categorical input value."
# Prepare input
features = np.array([[area, season_encoded, district_encoded, crop_encoded]])
prediction = model.predict(features)
return f"Predicted Crop Yield: {float(prediction[0]):.2f}"
except Exception as e:
return f"Error in prediction: {str(e)}"
# Gradio Interface
demo = gr.Interface(
fn=predict_yield,
inputs=[
gr.Number(label="Area (in acres)"),
gr.Dropdown(["Kharif", "Rabi", "Zaid"], label="Season"),
gr.Dropdown(["District A", "District B", "District C"], label="District"),
gr.Dropdown(["Wheat", "Rice", "Maize", "Sugarcane"], label="Crop"),
],
outputs=gr.Textbox(label="Prediction Result"),
title="Crop Yield Prediction",
description="Enter the details to predict crop yield.",
)
if __name__ == "__main__":
demo.launch()