|
import torch |
|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer |
|
from huggingface_hub import login |
|
import os |
|
import threading |
|
import spaces |
|
from openai import OpenAI |
|
import sys |
|
|
|
|
|
|
|
|
|
TOKEN = os.getenv('HF_AUTH_TOKEN') |
|
login(token=TOKEN, |
|
add_to_git_credential=False) |
|
|
|
|
|
API_KEY = os.getenv('OPEN_AI_API_KEY') |
|
|
|
DESCRIPTION = ''' |
|
<div> |
|
<h1 style="text-align: center;">Loki ποΈ</h1> |
|
<p>This uses Llama 3 and GPT-4o as generation, both of these make the final generation. <a href="https://huggingface.co/meta-llama/Meta-Llama-3-8B"><b>Llama3-8b</b></a> and <a href="https://platform.openai.com/docs/models/gpt-4o"><b>GPT-4o</b></a></p> |
|
</div> |
|
''' |
|
|
|
|
|
llama_tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct") |
|
llama_model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", token=TOKEN, torch_dtype=torch.float16).to('cuda') |
|
terminators = [ |
|
llama_tokenizer.eos_token_id, |
|
llama_tokenizer.convert_tokens_to_ids("<|eot_id|>") |
|
] |
|
|
|
|
|
def output_list(output: list): |
|
""" |
|
Grabs the output from the first position in list, |
|
and returns it as a string as a response |
|
""" |
|
cleaned_output = ''.join(filter(None, output)) |
|
|
|
return cleaned_output |
|
|
|
|
|
|
|
def gpt_generation(input: str, |
|
llama_output: str, |
|
mode: str): |
|
""" |
|
Passes the llama output and all input, |
|
returns the stream, so we can yield it in final generation. |
|
""" |
|
if llama_output is not None: |
|
base_prompt = '''Here is the users question:\n\n {llama_input}\n\n |
|
Llama3 LLM gave the user this response:\n\n {llama_output}\n |
|
Answer the users question with the help of Llama3, if Llama3 response wasn't accurate, |
|
than ignore it's output and give your's alone.''' |
|
|
|
prompt = base_prompt.format(llama_input=input, llama_output=llama_output) |
|
else: |
|
base_prompt = '''Here is the users question:\n\n {llama_input}\n\n |
|
Respond in a thorough and complete way.''' |
|
|
|
prompt = base_prompt.format(llama_input=input) |
|
|
|
|
|
client = OpenAI(api_key=API_KEY) |
|
|
|
stream = client.chat.completions.create( |
|
model=mode, |
|
messages=[{"role": "system", "content": "You are a helpful assistant called 'Loki'."}, |
|
{"role": "user", "content": prompt}], |
|
stream=True, |
|
) |
|
|
|
return stream |
|
|
|
|
|
def llama_generation(input_text: str, |
|
history: list, |
|
temperature: float, |
|
max_new_tokens: int): |
|
""" |
|
Pass input texts, tokenize, output and back to text. |
|
""" |
|
|
|
conversation = [] |
|
for user, assistant in history: |
|
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) |
|
conversation.append({"role": "user", "content": input_text}) |
|
|
|
input_ids = llama_tokenizer.apply_chat_template(conversation, return_tensors='pt').to(llama_model.device) |
|
|
|
streamer = TextIteratorStreamer(llama_tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) |
|
|
|
|
|
generate_kwargs = dict( |
|
input_ids=input_ids, |
|
streamer=streamer, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=True, |
|
temperature=temperature, |
|
eos_token_id=terminators[0] |
|
) |
|
|
|
|
|
if temperature == 0: |
|
generate_kwargs["do_sample"] = False |
|
|
|
|
|
thread = threading.Thread(target=llama_model.generate, kwargs=generate_kwargs) |
|
thread.start() |
|
thread.join() |
|
return streamer |
|
|
|
def check_cuda(): |
|
if torch.cuda.is_available(): |
|
return f"GPU Being Used: {torch.cuda.get_device_name(0)}" |
|
else: |
|
return "No GPU is being used right now." |
|
|
|
first_time = True |
|
llm_mode = "" |
|
|
|
@spaces.GPU(decoration=30) |
|
def bot_comms(input_text: str, |
|
history: list, |
|
temperature: float, |
|
max_new_tokens: int): |
|
""" |
|
The connection between gradio and the LLM's |
|
""" |
|
global first_time |
|
global llm_mode |
|
|
|
if input_text == "system details": |
|
yield f"Python: {sys.version}\nGradio Version: {gr.__version__}\nPyTorch Version: {torch.__version__}" |
|
return |
|
|
|
if input_text == "mode": |
|
if llm_mode == "": |
|
yield "The mode is currently at Loki Default mode" |
|
return |
|
else: |
|
yield f"The current mode: {llm_mode}" |
|
return |
|
|
|
if input_text == "check cuda": |
|
cuda_info = check_cuda() |
|
yield cuda_info |
|
return |
|
|
|
if input_text == "switch to loki": |
|
llm_mode = input_text |
|
yield "Loki is on ποΈ" |
|
return |
|
|
|
if input_text == "switch to llama": |
|
llm_mode = input_text |
|
yield "Got it! Llama is now activate for your questions only π¦" |
|
return |
|
|
|
if input_text == "switch to gpt-4o": |
|
llm_mode = input_text |
|
yield "Understood! GPT-4o is now hearing your responses only πΎ" |
|
return |
|
|
|
if input_text == "switch to gpt-3.5-turbo": |
|
llm_mode = input_text |
|
yield "Done. GPT-3.5-turbo is ready for your questions! π" |
|
return |
|
|
|
if llm_mode == "switch to llama": |
|
streamer = llama_generation(input_text=input_text, history=history, temperature=temperature, max_new_tokens=max_new_tokens) |
|
outputs = [] |
|
for text in streamer: |
|
outputs.append(text) |
|
yield "".join(outputs) |
|
|
|
if llm_mode == "switch to gpt-4o": |
|
stream = gpt_generation(input=input_text, llama_output="", mode="gpt-4o") |
|
outputs = [] |
|
for chunk in stream: |
|
if chunk.choices[0].delta.content is not None: |
|
text = chunk.choices[0].delta.content |
|
outputs.append(text) |
|
yield "".join(outputs) |
|
|
|
if llm_mode == "switch to gpt-3.5-turbo": |
|
stream = gpt_generation(input=input_text, llama_output="", mode="gpt-3.5-turbo") |
|
outputs = [] |
|
for chunk in stream: |
|
if chunk.choices[0].delta.content is not None: |
|
text = chunk.choices[0].delta.content |
|
outputs.append(text) |
|
yield "".join(outputs) |
|
|
|
if llm_mode is None or llm_mode == "" or llm_mode == "switch to loki": |
|
streamer = llama_generation(input_text=input_text, history=history, temperature=temperature, max_new_tokens=max_new_tokens) |
|
output_text = output_list([text for text in streamer]) |
|
stream = gpt_generation(input=input_text, llama_output=output_text, mode="gpt-4o") |
|
|
|
outputs = [] |
|
for chunk in stream: |
|
if chunk.choices[0].delta.content is not None: |
|
text = chunk.choices[0].delta.content |
|
outputs.append(text) |
|
yield "".join(outputs) |
|
|
|
chatbot=gr.Chatbot(height=600, label="Loki AI") |
|
|
|
with gr.Blocks(fill_height=True) as demo: |
|
gr.Markdown(DESCRIPTION) |
|
gr.ChatInterface( |
|
fn=bot_comms, |
|
chatbot=chatbot, |
|
fill_height=True, |
|
|
|
additional_inputs_accordion=gr.Accordion(label="βοΈ Parameters", open=False, render=False), |
|
additional_inputs=[ |
|
|
|
gr.Slider(minimum=0, |
|
maximum=1, |
|
step=0.1, |
|
value=0.95, |
|
label="Temperature", |
|
render=False), |
|
|
|
gr.Slider(minimum=128, |
|
maximum=1500, |
|
step=1, |
|
value=512, |
|
label="Max new tokens", |
|
render=False), |
|
], |
|
examples=[ |
|
["Make a poem of batman inside willy wonka"], |
|
["How can you a burrito with just flour?"], |
|
["How was saturn formed in 3 sentences"], |
|
["How does the frontal lobe effect playing soccer"], |
|
], |
|
cache_examples=False |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |