Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -23,8 +23,8 @@ scaling_factors = {'PROPERTY: Calculated Density (g/cm$^3$)': (5.5, 13.7),
|
|
| 23 |
'PROPERTY: HV': (107.0, 1183.0),
|
| 24 |
'PROPERTY: YS (MPa)': (62.0, 3416.0)}
|
| 25 |
|
| 26 |
-
input_mapping = {'PROPERTY: BCC/FCC/other': {'BCC': 0, 'FCC': 1, 'OTHER': 2
|
| 27 |
-
'PROPERTY: Processing method': {'ANNEAL': 0, 'CAST': 1, 'OTHER': 2, 'POWDER': 3, 'WROUGHT': 4
|
| 28 |
'PROPERTY: Microstructure': {'B2': 0, 'B2+BCC': 1, 'B2+L12': 2, 'B2+Laves+Sec.': 3, 'B2+Sec.': 4, 'BCC': 5,
|
| 29 |
'BCC+B2': 6, 'BCC+B2+FCC': 7, 'BCC+B2+FCC+Sec.': 8, 'BCC+B2+L12': 9, 'BCC+B2+Laves': 10,
|
| 30 |
'BCC+B2+Sec.': 11, 'BCC+BCC': 12, 'BCC+BCC+HCP': 13, 'BCC+BCC+Laves': 14,
|
|
@@ -34,22 +34,22 @@ input_mapping = {'PROPERTY: BCC/FCC/other': {'BCC': 0, 'FCC': 1, 'OTHER': 2, 'na
|
|
| 34 |
'FCC+BCC+B2': 28, 'FCC+BCC+B2+Sec.': 29, 'FCC+BCC+BCC': 30, 'FCC+BCC+Sec.': 31,
|
| 35 |
'FCC+FCC': 32, 'FCC+HCP': 33, 'FCC+HCP+Sec.': 34, 'FCC+L12': 35, 'FCC+L12+B2': 36,
|
| 36 |
'FCC+L12+Sec.': 37, 'FCC+Laves': 38, 'FCC+Laves(C14)': 39, 'FCC+Laves+Sec.': 40,
|
| 37 |
-
'FCC+Sec.': 41, 'L12+B2': 42, 'Laves(C14)+Sec.': 43, 'OTHER': 44
|
| 38 |
-
'PROPERTY: Single/Multiphase': {'': 0, 'M': 1, 'S': 2, 'OTHER': 3
|
| 39 |
|
| 40 |
unique_phase_elements = ['B2', 'BCC', 'FCC', 'HCP', 'L12', 'Laves', 'Laves(C14)', 'Laves(C15)', 'Sec.', 'OTHER']
|
| 41 |
|
| 42 |
input_cols = {
|
| 43 |
"PROPERTY: Alloy formula": "(PROPERTY: Alloy formula) "
|
| 44 |
-
"
|
| 45 |
"PROPERTY: Single/Multiphase": "(PROPERTY: Single/Multiphase) "
|
| 46 |
-
"
|
| 47 |
"PROPERTY: BCC/FCC/other": "(PROPERTY: BCC/FCC/other) "
|
| 48 |
-
"
|
| 49 |
"PROPERTY: Processing method": "(PROPERTY: Processing method) "
|
| 50 |
-
"
|
| 51 |
"PROPERTY: Microstructure": "(PROPERTY: Microstructure) "
|
| 52 |
-
"
|
| 53 |
}
|
| 54 |
|
| 55 |
def process_microstructure(list_phases):
|
|
@@ -64,34 +64,25 @@ def write_logs(message, message_type="Prediction"):
|
|
| 64 |
"""
|
| 65 |
Write logs
|
| 66 |
"""
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
print(message)
|
| 74 |
return
|
| 75 |
-
|
| 76 |
-
def fit_outputs(x, hardness_target, ys_target):
|
| 77 |
-
predictions = predict(x)[0]
|
| 78 |
-
error_hardness = np.sqrt(np.square(predictions[0]-hardness_target))
|
| 79 |
-
error_ys = np.sqrt(np.square(predictions[1]-ys_target))
|
| 80 |
-
print(predictions, hardness_target, ys_target, error_hardness, error_ys)
|
| 81 |
-
return error_hardness + error_ys
|
| 82 |
-
|
| 83 |
-
|
| 84 |
def predict(x, request: gr.Request):
|
| 85 |
"""
|
| 86 |
Predict the hardness and yield strength using the ML model. Input data is a dataframe
|
| 87 |
"""
|
| 88 |
-
loaded_model = tf.keras.models.load_model("
|
| 89 |
print("summary is", loaded_model.summary())
|
| 90 |
x = x.replace("", 0)
|
| 91 |
x = np.asarray(x).astype("float32")
|
| 92 |
y = loaded_model.predict(x)
|
| 93 |
y_hardness = y[0][0]
|
| 94 |
-
|
| 95 |
minimum_hardness, maximum_hardness = scaling_factors['PROPERTY: HV']
|
| 96 |
minimum_ys, maximum_ys = scaling_factors['PROPERTY: YS (MPa)']
|
| 97 |
print("Prediction is ", y)
|
|
@@ -100,9 +91,9 @@ def predict(x, request: gr.Request):
|
|
| 100 |
print("MESSAGE")
|
| 101 |
print(message)
|
| 102 |
res = write_logs(message)
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
|
| 107 |
|
| 108 |
def predict_from_tuple(in1, in2, in3, in4, in5, request: gr.Request):
|
|
@@ -142,9 +133,8 @@ def predict_from_tuple(in1, in2, in3, in4, in5, request: gr.Request):
|
|
| 142 |
input_df = pd.DataFrame.from_dict(input_dict)
|
| 143 |
one_hot = utils.turn_into_one_hot(input_df, input_mapping)
|
| 144 |
print("One hot columns are ", one_hot.columns)
|
| 145 |
-
# return predict(input_df, request)
|
| 146 |
return predict(one_hot, request)
|
| 147 |
-
|
| 148 |
|
| 149 |
def predict_inverse(target_hardness, target_yield_strength, request: gr.Request):
|
| 150 |
|
|
|
|
| 23 |
'PROPERTY: HV': (107.0, 1183.0),
|
| 24 |
'PROPERTY: YS (MPa)': (62.0, 3416.0)}
|
| 25 |
|
| 26 |
+
input_mapping = {'PROPERTY: BCC/FCC/other': {'BCC': 0, 'FCC': 1, 'OTHER': 2},#, 'nan': 2},
|
| 27 |
+
'PROPERTY: Processing method': {'ANNEAL': 0, 'CAST': 1, 'OTHER': 2, 'POWDER': 3, 'WROUGHT': 4},#, 'nan': 2},
|
| 28 |
'PROPERTY: Microstructure': {'B2': 0, 'B2+BCC': 1, 'B2+L12': 2, 'B2+Laves+Sec.': 3, 'B2+Sec.': 4, 'BCC': 5,
|
| 29 |
'BCC+B2': 6, 'BCC+B2+FCC': 7, 'BCC+B2+FCC+Sec.': 8, 'BCC+B2+L12': 9, 'BCC+B2+Laves': 10,
|
| 30 |
'BCC+B2+Sec.': 11, 'BCC+BCC': 12, 'BCC+BCC+HCP': 13, 'BCC+BCC+Laves': 14,
|
|
|
|
| 34 |
'FCC+BCC+B2': 28, 'FCC+BCC+B2+Sec.': 29, 'FCC+BCC+BCC': 30, 'FCC+BCC+Sec.': 31,
|
| 35 |
'FCC+FCC': 32, 'FCC+HCP': 33, 'FCC+HCP+Sec.': 34, 'FCC+L12': 35, 'FCC+L12+B2': 36,
|
| 36 |
'FCC+L12+Sec.': 37, 'FCC+Laves': 38, 'FCC+Laves(C14)': 39, 'FCC+Laves+Sec.': 40,
|
| 37 |
+
'FCC+Sec.': 41, 'L12+B2': 42, 'Laves(C14)+Sec.': 43, 'OTHER': 44},#, 'nan': 44},
|
| 38 |
+
'PROPERTY: Single/Multiphase': {'': 0, 'M': 1, 'S': 2, 'OTHER': 3}}#, 'nan': 3}}
|
| 39 |
|
| 40 |
unique_phase_elements = ['B2', 'BCC', 'FCC', 'HCP', 'L12', 'Laves', 'Laves(C14)', 'Laves(C15)', 'Sec.', 'OTHER']
|
| 41 |
|
| 42 |
input_cols = {
|
| 43 |
"PROPERTY: Alloy formula": "(PROPERTY: Alloy formula) "
|
| 44 |
+
"Enter alloy formula using proportions representation (i.e. Al0.25 Co1 Fe1 Ni1)",
|
| 45 |
"PROPERTY: Single/Multiphase": "(PROPERTY: Single/Multiphase) "
|
| 46 |
+
"Choose between Single (S), Multiphase (M) and other (OTHER)",
|
| 47 |
"PROPERTY: BCC/FCC/other": "(PROPERTY: BCC/FCC/other) "
|
| 48 |
+
"Choose between BCC, FCC and other ",
|
| 49 |
"PROPERTY: Processing method": "(PROPERTY: Processing method) "
|
| 50 |
+
"Choose your processing method (ANNEAL, CAST, POWDER, WROUGHT or OTHER)",
|
| 51 |
"PROPERTY: Microstructure": "(PROPERTY: Microstructure) "
|
| 52 |
+
"Choose the microstructure (SEC means the secondary/tertiary microstructure is not one of FCC, BCC, HCP, L12, B2, Laves, Laves (C14), Laves (C15))",
|
| 53 |
}
|
| 54 |
|
| 55 |
def process_microstructure(list_phases):
|
|
|
|
| 64 |
"""
|
| 65 |
Write logs
|
| 66 |
"""
|
| 67 |
+
with Repository(local_dir="data", clone_from=dataset_url, use_auth_token=WRITE_TOKEN).commit(commit_message="from private", blocking=False):
|
| 68 |
+
with open(dataset_path, "a") as csvfile:
|
| 69 |
+
writer = csv.DictWriter(csvfile, fieldnames=["name", "message", "time"])
|
| 70 |
+
writer.writerow(
|
| 71 |
+
{"name": message_type, "message": message, "time": str(datetime.now())}
|
| 72 |
+
)
|
|
|
|
| 73 |
return
|
| 74 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
def predict(x, request: gr.Request):
|
| 76 |
"""
|
| 77 |
Predict the hardness and yield strength using the ML model. Input data is a dataframe
|
| 78 |
"""
|
| 79 |
+
loaded_model = tf.keras.models.load_model("hardness.h5")
|
| 80 |
print("summary is", loaded_model.summary())
|
| 81 |
x = x.replace("", 0)
|
| 82 |
x = np.asarray(x).astype("float32")
|
| 83 |
y = loaded_model.predict(x)
|
| 84 |
y_hardness = y[0][0]
|
| 85 |
+
y_ys = y[0][1]
|
| 86 |
minimum_hardness, maximum_hardness = scaling_factors['PROPERTY: HV']
|
| 87 |
minimum_ys, maximum_ys = scaling_factors['PROPERTY: YS (MPa)']
|
| 88 |
print("Prediction is ", y)
|
|
|
|
| 91 |
print("MESSAGE")
|
| 92 |
print(message)
|
| 93 |
res = write_logs(message)
|
| 94 |
+
interpret_fig = utils.interpret(x)
|
| 95 |
+
return (round(y_hardness*(maximum_hardness-minimum_hardness)+minimum_hardness, 2), 12,
|
| 96 |
+
round(y_ys*(maximum_ys-minimum_ys)+minimum_ys, 2), 12, interpret_fig)
|
| 97 |
|
| 98 |
|
| 99 |
def predict_from_tuple(in1, in2, in3, in4, in5, request: gr.Request):
|
|
|
|
| 133 |
input_df = pd.DataFrame.from_dict(input_dict)
|
| 134 |
one_hot = utils.turn_into_one_hot(input_df, input_mapping)
|
| 135 |
print("One hot columns are ", one_hot.columns)
|
|
|
|
| 136 |
return predict(one_hot, request)
|
| 137 |
+
|
| 138 |
|
| 139 |
def predict_inverse(target_hardness, target_yield_strength, request: gr.Request):
|
| 140 |
|