Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
import pickle
|
5 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
6 |
+
from sklearn.preprocessing import LabelEncoder
|
7 |
+
|
8 |
+
# Load the trained model
|
9 |
+
model = tf.keras.models.load_model("cyberbullying_hybrid_model.h5")
|
10 |
+
|
11 |
+
# Load the tokenizer
|
12 |
+
with open("tokenizer.pkl", "rb") as f:
|
13 |
+
tokenizer = pickle.load(f)
|
14 |
+
|
15 |
+
# Load the label encoder
|
16 |
+
with open("label_encoder.pkl", "rb") as f:
|
17 |
+
label_encoder = pickle.load(f)
|
18 |
+
|
19 |
+
# Function to preprocess text and make predictions
|
20 |
+
def predict_cyberbullying(text):
|
21 |
+
if not text.strip():
|
22 |
+
return "Please enter a valid text."
|
23 |
+
|
24 |
+
# Convert text to sequences
|
25 |
+
seq = tokenizer.texts_to_sequences([text])
|
26 |
+
padded_seq = pad_sequences(seq, maxlen=100) # Ensure same max_length used during training
|
27 |
+
|
28 |
+
# Make prediction
|
29 |
+
prediction = model.predict(padded_seq)
|
30 |
+
predicted_label = np.argmax(prediction, axis=1) # Get index of highest probability
|
31 |
+
|
32 |
+
# Convert index back to class label
|
33 |
+
predicted_class = label_encoder.inverse_transform(predicted_label)[0]
|
34 |
+
|
35 |
+
return f"Predicted Cyberbullying Type: {predicted_class}"
|
36 |
+
|
37 |
+
# Create Gradio interface
|
38 |
+
ui = gr.Interface(
|
39 |
+
fn=predict_cyberbullying,
|
40 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter a text..."),
|
41 |
+
outputs="text",
|
42 |
+
title="Cyberbullying Detection",
|
43 |
+
description="Enter a text and the model will predict the type of cyberbullying."
|
44 |
+
)
|
45 |
+
|
46 |
+
# Launch the UI
|
47 |
+
ui.launch()
|