File size: 4,759 Bytes
4bf23fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import joblib
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.ensemble import RandomForestClassifier, VotingClassifier, GradientBoostingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.metrics import (
    classification_report, confusion_matrix, accuracy_score,
    ConfusionMatrixDisplay
)
import warnings
warnings.filterwarnings('ignore')

# =====================
# 1. Load Dataset
# =====================
df = pd.read_csv("ARTI_Main_Data.csv")

# Handle missing values
df['Bacterial_Infection'] = df['Bacterial_Infection'].fillna("None")
df['Viral_Infection'] = df['Viral_Infection'].fillna("None")

# =====================
# 2. Set up features and multi-class target
# =====================
features = [
    'Age', 'Sex', 'Socioeconomic_Status', 'Vitamin_D_Level_ng/ml',
    'Vitamin_D_Status', 'Vitamin_D_Supplemented', 'Bacterial_Infection',
    'Viral_Infection', 'Co_Infection', 'IL6_pg/ml', 'IL8_pg/ml'
]
target = 'ARTI_Severity'

# =====================
# 3. Encode features and target
# =====================
df_encoded = df[features].copy()
cat_cols = df_encoded.select_dtypes(include=['object']).columns
label_encoders = {}

for col in cat_cols:
    le = LabelEncoder()
    df_encoded[col] = le.fit_transform(df_encoded[col])
    label_encoders[col] = le

# Encode target (multi-class)
target_encoder = LabelEncoder()
df['ARTI_Severity_Label'] = target_encoder.fit_transform(df[target])
y = df['ARTI_Severity_Label']

# =====================
# 4. Scale numerical features
# =====================
scaler = StandardScaler()
X_scaled = scaler.fit_transform(df_encoded)

# =====================
# 5. Train-test split
# =====================
X_train, X_test, y_train, y_test = train_test_split(
    X_scaled, y, test_size=0.2, random_state=42, stratify=y
)

# =====================
# 6. Define Models with tuned parameters
# =====================
log_reg = LogisticRegression(max_iter=1000, class_weight='balanced', C=1.0)
rf = RandomForestClassifier(n_estimators=200, max_depth=10, class_weight='balanced', random_state=42)
svm = SVC(probability=True, kernel='rbf', C=1.5, class_weight='balanced')
gb = GradientBoostingClassifier(n_estimators=150, learning_rate=0.1, random_state=42)

# Voting classifier with soft voting
voting_model = VotingClassifier(estimators=[
    ('lr', log_reg),
    ('rf', rf),
    ('svm', svm),
    ('gb', gb)
], voting='soft')

# =====================
# 7. Train Model
# =====================
voting_model.fit(X_train, y_train)

# Save model and preprocessors
joblib.dump(voting_model, "voting_model_multiclass.pkl")
joblib.dump(scaler, "scaler.pkl")
joblib.dump(label_encoders, "feature_label_encoders.pkl")
joblib.dump(target_encoder, "target_label_encoder.pkl")

# =====================
# 8. Evaluation
# =====================
y_pred = voting_model.predict(X_test)

print("\nπŸ“Š Confusion Matrix:\n", confusion_matrix(y_test, y_pred))
print("\nπŸ“‘ Classification Report:\n", classification_report(y_test, y_pred, target_names=target_encoder.classes_))
print("\nβœ… Accuracy Score:", accuracy_score(y_test, y_pred))

# =====================
# 9. Visualizations
# =====================

# 1. Confusion Matrix
disp = ConfusionMatrixDisplay(confusion_matrix=confusion_matrix(y_test, y_pred),
                              display_labels=target_encoder.classes_)
disp.plot(cmap=plt.cm.Blues)
plt.title("Confusion Matrix")
plt.savefig("confusion_matrix_multiclass.png")
plt.show()

# 2. Feature Importance (Random Forest)
rf.fit(X_train, y_train)
plt.figure(figsize=(8, 5))
importances = rf.feature_importances_
indices = np.argsort(importances)[::-1]
feature_names = df_encoded.columns

sns.barplot(x=importances[indices], y=np.array(feature_names)[indices], palette='viridis')
plt.title("Feature Importance (Random Forest)")
plt.xlabel("Importance Score")
plt.ylabel("Features")
plt.tight_layout()
plt.savefig("feature_importance_rf.png")
plt.show()

# 3. Class Distribution
plt.figure(figsize=(6, 4))
sns.countplot(x=df[target], palette='pastel')
plt.title("Distribution of ARTI Severity Classes")
plt.xlabel("ARTI Severity")
plt.ylabel("Count")
plt.tight_layout()
plt.savefig("class_distribution.png")
plt.show()

# 4. Actual vs Predicted Comparison
plt.figure(figsize=(8, 5))
sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, fmt="d", cmap="YlGnBu",
            xticklabels=target_encoder.classes_, yticklabels=target_encoder.classes_)
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.title("Actual vs Predicted Heatmap")
plt.savefig("actual_vs_predicted_heatmap.png")
plt.show()