Spaces:
Sleeping
Sleeping
File size: 4,759 Bytes
4bf23fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import joblib
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, StandardScaler
from sklearn.ensemble import RandomForestClassifier, VotingClassifier, GradientBoostingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.metrics import (
classification_report, confusion_matrix, accuracy_score,
ConfusionMatrixDisplay
)
import warnings
warnings.filterwarnings('ignore')
# =====================
# 1. Load Dataset
# =====================
df = pd.read_csv("ARTI_Main_Data.csv")
# Handle missing values
df['Bacterial_Infection'] = df['Bacterial_Infection'].fillna("None")
df['Viral_Infection'] = df['Viral_Infection'].fillna("None")
# =====================
# 2. Set up features and multi-class target
# =====================
features = [
'Age', 'Sex', 'Socioeconomic_Status', 'Vitamin_D_Level_ng/ml',
'Vitamin_D_Status', 'Vitamin_D_Supplemented', 'Bacterial_Infection',
'Viral_Infection', 'Co_Infection', 'IL6_pg/ml', 'IL8_pg/ml'
]
target = 'ARTI_Severity'
# =====================
# 3. Encode features and target
# =====================
df_encoded = df[features].copy()
cat_cols = df_encoded.select_dtypes(include=['object']).columns
label_encoders = {}
for col in cat_cols:
le = LabelEncoder()
df_encoded[col] = le.fit_transform(df_encoded[col])
label_encoders[col] = le
# Encode target (multi-class)
target_encoder = LabelEncoder()
df['ARTI_Severity_Label'] = target_encoder.fit_transform(df[target])
y = df['ARTI_Severity_Label']
# =====================
# 4. Scale numerical features
# =====================
scaler = StandardScaler()
X_scaled = scaler.fit_transform(df_encoded)
# =====================
# 5. Train-test split
# =====================
X_train, X_test, y_train, y_test = train_test_split(
X_scaled, y, test_size=0.2, random_state=42, stratify=y
)
# =====================
# 6. Define Models with tuned parameters
# =====================
log_reg = LogisticRegression(max_iter=1000, class_weight='balanced', C=1.0)
rf = RandomForestClassifier(n_estimators=200, max_depth=10, class_weight='balanced', random_state=42)
svm = SVC(probability=True, kernel='rbf', C=1.5, class_weight='balanced')
gb = GradientBoostingClassifier(n_estimators=150, learning_rate=0.1, random_state=42)
# Voting classifier with soft voting
voting_model = VotingClassifier(estimators=[
('lr', log_reg),
('rf', rf),
('svm', svm),
('gb', gb)
], voting='soft')
# =====================
# 7. Train Model
# =====================
voting_model.fit(X_train, y_train)
# Save model and preprocessors
joblib.dump(voting_model, "voting_model_multiclass.pkl")
joblib.dump(scaler, "scaler.pkl")
joblib.dump(label_encoders, "feature_label_encoders.pkl")
joblib.dump(target_encoder, "target_label_encoder.pkl")
# =====================
# 8. Evaluation
# =====================
y_pred = voting_model.predict(X_test)
print("\nπ Confusion Matrix:\n", confusion_matrix(y_test, y_pred))
print("\nπ Classification Report:\n", classification_report(y_test, y_pred, target_names=target_encoder.classes_))
print("\nβ
Accuracy Score:", accuracy_score(y_test, y_pred))
# =====================
# 9. Visualizations
# =====================
# 1. Confusion Matrix
disp = ConfusionMatrixDisplay(confusion_matrix=confusion_matrix(y_test, y_pred),
display_labels=target_encoder.classes_)
disp.plot(cmap=plt.cm.Blues)
plt.title("Confusion Matrix")
plt.savefig("confusion_matrix_multiclass.png")
plt.show()
# 2. Feature Importance (Random Forest)
rf.fit(X_train, y_train)
plt.figure(figsize=(8, 5))
importances = rf.feature_importances_
indices = np.argsort(importances)[::-1]
feature_names = df_encoded.columns
sns.barplot(x=importances[indices], y=np.array(feature_names)[indices], palette='viridis')
plt.title("Feature Importance (Random Forest)")
plt.xlabel("Importance Score")
plt.ylabel("Features")
plt.tight_layout()
plt.savefig("feature_importance_rf.png")
plt.show()
# 3. Class Distribution
plt.figure(figsize=(6, 4))
sns.countplot(x=df[target], palette='pastel')
plt.title("Distribution of ARTI Severity Classes")
plt.xlabel("ARTI Severity")
plt.ylabel("Count")
plt.tight_layout()
plt.savefig("class_distribution.png")
plt.show()
# 4. Actual vs Predicted Comparison
plt.figure(figsize=(8, 5))
sns.heatmap(confusion_matrix(y_test, y_pred), annot=True, fmt="d", cmap="YlGnBu",
xticklabels=target_encoder.classes_, yticklabels=target_encoder.classes_)
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.title("Actual vs Predicted Heatmap")
plt.savefig("actual_vs_predicted_heatmap.png")
plt.show()
|