# content_analysis.py import re from typing import List, Dict, Any from collections import Counter def check_text_presence(full_text: str, search_terms: List[str]) -> Dict[str, bool]: full_text_lower = full_text.lower() return {term: term.lower() in full_text_lower for term in search_terms} def check_metadata(plain_text: str) -> Dict[str, Any]: word_count_val = len(plain_text.split()) return { "author_email": bool(re.search(r'\b[\w.-]+?@\w+?\.\w+?\b', plain_text)), "list_of_authors": bool(re.search(r'Authors?:', plain_text, re.IGNORECASE)), "keywords_list": bool(re.search(r'Keywords?:', plain_text, re.IGNORECASE)), "word_count": word_count_val if word_count_val > 0 else "Missing" } def check_disclosures(plain_text: str) -> Dict[str, bool]: search_terms = [ "conflict of interest statement", "ethics statement", "funding statement", "data access statement" ] plain_text_lower = plain_text.lower() results = {term: term in plain_text_lower for term in search_terms} results["author contribution statement"] = ( "author contribution statement" in plain_text_lower or "author contributions statement" in plain_text_lower ) return results def check_figures_and_tables(plain_text: str) -> Dict[str, bool]: return { "figures_with_citations": bool(re.search(r'Figure \d+.*?citation', plain_text, re.IGNORECASE)), "figures_legends": bool(re.search(r'Figure \d+.*?legend', plain_text, re.IGNORECASE)), "tables_legends": bool(re.search(r'Table \d+.*?legend', plain_text, re.IGNORECASE)) } def check_references_summary(plain_text: str) -> Dict[str, Any]: abstract_candidate = plain_text[:2500] # Slightly larger window for abstract return { "old_references": bool(re.search(r'\b19[0-9]{2}\b', plain_text)), "citations_in_abstract": bool(re.search(r'\[\d+\]', abstract_candidate)) or \ bool(re.search(r'\bcit(?:ation|ed)\b', abstract_candidate, re.IGNORECASE)), "reference_count": len(re.findall(r'\[\d+(?:,\s*\d+)*\]', plain_text)), "self_citations": bool(re.search(r'Self-citation', plain_text, re.IGNORECASE)) } def check_structure(plain_text: str) -> Dict[str, bool]: text_lower = plain_text.lower() imrad_present = all(section in text_lower for section in ["introduction", "method", "result", "discussion"]) # A more robust IMRAD check might look for these as section headers return { "imrad_structure": imrad_present, "abstract_structure": "structured abstract" in text_lower } def check_figure_order(plain_text: str) -> Dict[str, Any]: figure_pattern = r'(?:Fig(?:ure)?\.?|Figure)\s*(\d+)' figure_references_str = re.findall(figure_pattern, plain_text, re.IGNORECASE) valid_figure_numbers_int = [int(num_str) for num_str in figure_references_str if num_str.isdigit()] unique_sorted_figures = sorted(list(set(valid_figure_numbers_int))) is_sequential = True if len(unique_sorted_figures) > 1: is_sequential = all(unique_sorted_figures[i] + 1 == unique_sorted_figures[i+1] for i in range(len(unique_sorted_figures)-1)) missing_figures = [] if unique_sorted_figures: max_fig = max(unique_sorted_figures) expected_figures = set(range(1, max_fig + 1)) missing_figures = sorted(list(expected_figures - set(unique_sorted_figures))) counts = Counter(valid_figure_numbers_int) duplicate_refs = [num for num, count in counts.items() if count > 1] return { "sequential_order_of_unique_figures": is_sequential, "figure_count_unique": len(unique_sorted_figures), "missing_figures_in_sequence_to_max": missing_figures, "figure_order_as_encountered": valid_figure_numbers_int, "duplicate_references_to_same_figure_number": duplicate_refs } def check_reference_order(plain_text: str) -> Dict[str, Any]: reference_pattern = r'\[(\d+)\]' references_str = re.findall(reference_pattern, plain_text) ref_numbers_int = [int(ref) for ref in references_str if ref.isdigit() and int(ref) > 0] # Ensure ref > 0 max_ref_val = 0 out_of_order_details = [] is_ordered_in_text = True # Assume ordered unless proven otherwise if ref_numbers_int: max_ref_val = max(ref_numbers_int) current_max_seen_in_text = 0 for i, ref in enumerate(ref_numbers_int): if ref < current_max_seen_in_text: # Check against actual max seen so far out_of_order_details.append({ "position_in_text_occurrences": i + 1, "value": ref, "previous_max_value_seen": current_max_seen_in_text, "message": f"Reference [{ref}] appeared after a higher reference [{current_max_seen_in_text}] was already cited." }) current_max_seen_in_text = max(current_max_seen_in_text, ref) if len(ref_numbers_int) > 1: is_ordered_in_text = all(ref_numbers_int[i] <= ref_numbers_int[i+1] for i in range(len(ref_numbers_int)-1)) all_expected_refs_up_to_max = set(range(1, max_ref_val + 1)) if max_ref_val > 0 else set() used_refs_set = set(ref_numbers_int) missing_refs_in_sequence_to_max = sorted(list(all_expected_refs_up_to_max - used_refs_set)) return { "max_reference_number_cited": max_ref_val, "out_of_order_citations_details": out_of_order_details, "missing_references_up_to_max_cited": missing_refs_in_sequence_to_max, "is_citation_order_non_decreasing_in_text": is_ordered_in_text }