Update language_checker.py
Browse files- language_checker.py +99 -20
language_checker.py
CHANGED
|
@@ -3,15 +3,78 @@ import re
|
|
| 3 |
import traceback
|
| 4 |
from typing import List, Dict, Any
|
| 5 |
import language_tool_python
|
|
|
|
| 6 |
|
| 7 |
from text_utils import convert_markdown_to_plain_text
|
| 8 |
# config.py (setting JAVA_HOME) should be imported early in app.py
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
def perform_language_checks(markdown_text_from_filtered_pdf: str) -> Dict[str, Any]:
|
| 11 |
"""
|
| 12 |
Performs LanguageTool checks on plain text derived from font-filtered Markdown.
|
| 13 |
Filters issues to only include those between "abstract" and "references/bibliography"
|
| 14 |
found within this specific text.
|
|
|
|
| 15 |
"""
|
| 16 |
if not markdown_text_from_filtered_pdf or not markdown_text_from_filtered_pdf.strip():
|
| 17 |
print("LT_Checker: Input Markdown text is empty.")
|
|
@@ -25,16 +88,33 @@ def perform_language_checks(markdown_text_from_filtered_pdf: str) -> Dict[str, A
|
|
| 25 |
print("LT_Checker: Plain text derived from Markdown is empty after cleaning.")
|
| 26 |
return {"total_issues": 0, "issues_list": [], "text_used_for_analysis": ""}
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
text_for_lt_analysis_lower = text_for_lt_analysis.lower()
|
| 29 |
|
| 30 |
abstract_match = re.search(r'\babstract\b', text_for_lt_analysis_lower)
|
| 31 |
content_start_index = abstract_match.start() if abstract_match else 0
|
|
|
|
| 32 |
if abstract_match:
|
| 33 |
print(f"LT_Checker: Found 'abstract' at index {content_start_index} in its text.")
|
| 34 |
else:
|
| 35 |
print(f"LT_Checker: Did not find 'abstract', LT analysis from index 0 of its text.")
|
| 36 |
|
| 37 |
-
# Determine end boundary (references or bibliography)
|
| 38 |
references_match = re.search(r'\breferences\b', text_for_lt_analysis_lower)
|
| 39 |
bibliography_match = re.search(r'\bbibliography\b', text_for_lt_analysis_lower)
|
| 40 |
content_end_index = len(text_for_lt_analysis)
|
|
@@ -61,35 +141,30 @@ def perform_language_checks(markdown_text_from_filtered_pdf: str) -> Dict[str, A
|
|
| 61 |
raw_lt_matches = tool.check(text_for_lt_analysis)
|
| 62 |
|
| 63 |
lt_issues_in_range = 0
|
|
|
|
|
|
|
| 64 |
for idx, match in enumerate(raw_lt_matches):
|
| 65 |
if match.ruleId == "EN_SPLIT_WORDS_HYPHEN": continue # Common rule to ignore
|
| 66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
if not (content_start_index <= match.offset < content_end_index):
|
| 68 |
continue
|
| 69 |
lt_issues_in_range += 1
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
# New context extraction for ~10 words:
|
| 75 |
-
words_around = 1 # Number of words to try and get on each side
|
| 76 |
-
|
| 77 |
-
# Text before the error
|
| 78 |
pre_error_text = text_for_lt_analysis[:match.offset]
|
| 79 |
words_before = pre_error_text.split()[-words_around:]
|
| 80 |
-
|
| 81 |
-
# Text after the error
|
| 82 |
post_error_text = text_for_lt_analysis[match.offset + match.errorLength:]
|
| 83 |
words_after = post_error_text.split()[:words_around]
|
| 84 |
-
|
| 85 |
-
# Combine to form the new wider context
|
| 86 |
context_parts = []
|
| 87 |
-
if words_before:
|
| 88 |
-
|
| 89 |
-
context_parts.append(
|
| 90 |
-
if words_after:
|
| 91 |
-
context_parts.append(" ".join(words_after))
|
| 92 |
-
|
| 93 |
wider_context_str = " ".join(context_parts)
|
| 94 |
|
| 95 |
processed_lt_issues.append({
|
|
@@ -97,7 +172,7 @@ def perform_language_checks(markdown_text_from_filtered_pdf: str) -> Dict[str, A
|
|
| 97 |
'ruleId': match.ruleId,
|
| 98 |
'message': match.message,
|
| 99 |
'context_text': wider_context_str,
|
| 100 |
-
'error_text_verbatim': error_text_verbatim,
|
| 101 |
'offset_in_text': match.offset,
|
| 102 |
'error_length': match.errorLength,
|
| 103 |
'replacements_suggestion': match.replacements[:3] if match.replacements else [],
|
|
@@ -107,7 +182,11 @@ def perform_language_checks(markdown_text_from_filtered_pdf: str) -> Dict[str, A
|
|
| 107 |
'pdf_coordinates_list': [],
|
| 108 |
'mapped_page_number': -1
|
| 109 |
})
|
| 110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
return {
|
| 113 |
"total_issues": len(processed_lt_issues),
|
|
|
|
| 3 |
import traceback
|
| 4 |
from typing import List, Dict, Any
|
| 5 |
import language_tool_python
|
| 6 |
+
import logging # For more persistent error messages
|
| 7 |
|
| 8 |
from text_utils import convert_markdown_to_plain_text
|
| 9 |
# config.py (setting JAVA_HOME) should be imported early in app.py
|
| 10 |
|
| 11 |
+
# Import SpanMarkerModel
|
| 12 |
+
try:
|
| 13 |
+
from span_marker import SpanMarkerModel
|
| 14 |
+
SPAN_MARKER_AVAILABLE = True
|
| 15 |
+
except ImportError:
|
| 16 |
+
SPAN_MARKER_AVAILABLE = False
|
| 17 |
+
SpanMarkerModel = None # Placeholder if not available
|
| 18 |
+
print("LT_Checker: Warning: span_marker library not found. Acronym filtering will be disabled.")
|
| 19 |
+
print("LT_Checker: Please install it via 'pip install span_marker'")
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
# --- Global SpanMarker Model for Acronyms ---
|
| 23 |
+
_span_marker_model_acronyms = None
|
| 24 |
+
_span_marker_model_loaded_successfully = False
|
| 25 |
+
_span_marker_model_load_attempted = False
|
| 26 |
+
|
| 27 |
+
SPAN_MARKER_ACRONYM_MODEL_NAME = "tomaarsen/span-marker-bert-base-uncased-acronyms"
|
| 28 |
+
|
| 29 |
+
def _load_span_marker_model_if_needed():
|
| 30 |
+
global _span_marker_model_acronyms, _span_marker_model_loaded_successfully, _span_marker_model_load_attempted
|
| 31 |
+
|
| 32 |
+
if not SPAN_MARKER_AVAILABLE or _span_marker_model_load_attempted:
|
| 33 |
+
return
|
| 34 |
+
|
| 35 |
+
_span_marker_model_load_attempted = True
|
| 36 |
+
try:
|
| 37 |
+
print(f"LT_Checker: Attempting to load SpanMarker model '{SPAN_MARKER_ACRONYM_MODEL_NAME}' for acronym detection...")
|
| 38 |
+
# Ensure you have torch installed, or the appropriate backend for SpanMarkerModel
|
| 39 |
+
_span_marker_model_acronyms = SpanMarkerModel.from_pretrained(SPAN_MARKER_ACRONYM_MODEL_NAME)
|
| 40 |
+
_span_marker_model_loaded_successfully = True
|
| 41 |
+
print(f"LT_Checker: SpanMarker model '{SPAN_MARKER_ACRONYM_MODEL_NAME}' loaded successfully.")
|
| 42 |
+
except Exception as e:
|
| 43 |
+
_span_marker_model_loaded_successfully = False
|
| 44 |
+
print(f"LT_Checker: CRITICAL ERROR loading SpanMarker model '{SPAN_MARKER_ACRONYM_MODEL_NAME}': {e}")
|
| 45 |
+
print(f"LT_Checker: Acronym filtering will be disabled. Please check your installation and model availability.")
|
| 46 |
+
logging.error(f"Failed to load SpanMarker model '{SPAN_MARKER_ACRONYM_MODEL_NAME}': {e}", exc_info=True)
|
| 47 |
+
|
| 48 |
+
# Attempt to load the model when the module is first imported.
|
| 49 |
+
# This might slightly delay the initial import if the model is large.
|
| 50 |
+
_load_span_marker_model_if_needed()
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def _is_text_acronym_related(text_to_check: str, acronym_entities: List[Dict[str, Any]]) -> bool:
|
| 54 |
+
"""
|
| 55 |
+
Checks if the text_to_check contains any of the acronyms (long or short form)
|
| 56 |
+
identified by the SpanMarker model.
|
| 57 |
+
"""
|
| 58 |
+
if not acronym_entities or not text_to_check:
|
| 59 |
+
return False
|
| 60 |
+
|
| 61 |
+
text_to_check_lower = text_to_check.lower()
|
| 62 |
+
for entity in acronym_entities:
|
| 63 |
+
acronym_span = entity.get('span', '')
|
| 64 |
+
if acronym_span: # Ensure span is not empty
|
| 65 |
+
# Check if the identified acronym span is present in the text flagged by LanguageTool
|
| 66 |
+
if acronym_span.lower() in text_to_check_lower:
|
| 67 |
+
# print(f"Debug AcronymFilter: Text '{text_to_check}' (from LT) contains detected acronym '{acronym_span}'. Filtering.")
|
| 68 |
+
return True
|
| 69 |
+
return False
|
| 70 |
+
|
| 71 |
+
|
| 72 |
def perform_language_checks(markdown_text_from_filtered_pdf: str) -> Dict[str, Any]:
|
| 73 |
"""
|
| 74 |
Performs LanguageTool checks on plain text derived from font-filtered Markdown.
|
| 75 |
Filters issues to only include those between "abstract" and "references/bibliography"
|
| 76 |
found within this specific text.
|
| 77 |
+
Also filters out issues related to acronyms identified by SpanMarker.
|
| 78 |
"""
|
| 79 |
if not markdown_text_from_filtered_pdf or not markdown_text_from_filtered_pdf.strip():
|
| 80 |
print("LT_Checker: Input Markdown text is empty.")
|
|
|
|
| 88 |
print("LT_Checker: Plain text derived from Markdown is empty after cleaning.")
|
| 89 |
return {"total_issues": 0, "issues_list": [], "text_used_for_analysis": ""}
|
| 90 |
|
| 91 |
+
# --- Acronym Detection using SpanMarker ---
|
| 92 |
+
acronym_entities = []
|
| 93 |
+
if _span_marker_model_loaded_successfully and _span_marker_model_acronyms:
|
| 94 |
+
try:
|
| 95 |
+
# print(f"LT_Checker: Running SpanMarker on text of length {len(text_for_lt_analysis)} for acronyms.")
|
| 96 |
+
acronym_entities = _span_marker_model_acronyms.predict(text_for_lt_analysis)
|
| 97 |
+
# if acronym_entities:
|
| 98 |
+
# print(f"LT_Checker: SpanMarker found {len(acronym_entities)} acronym entities. Examples: {[e['span'] for e in acronym_entities[:3]]}")
|
| 99 |
+
except Exception as sm_e:
|
| 100 |
+
print(f"LT_Checker: Error during SpanMarker prediction: {sm_e}")
|
| 101 |
+
logging.warning(f"SpanMarker prediction failed: {sm_e}", exc_info=True)
|
| 102 |
+
# Proceed without acronym filtering if prediction fails
|
| 103 |
+
acronym_entities = []
|
| 104 |
+
elif SPAN_MARKER_AVAILABLE and not _span_marker_model_loaded_successfully:
|
| 105 |
+
print("LT_Checker: SpanMarker model was available but not loaded successfully. Acronym filtering disabled for this run.")
|
| 106 |
+
|
| 107 |
+
|
| 108 |
text_for_lt_analysis_lower = text_for_lt_analysis.lower()
|
| 109 |
|
| 110 |
abstract_match = re.search(r'\babstract\b', text_for_lt_analysis_lower)
|
| 111 |
content_start_index = abstract_match.start() if abstract_match else 0
|
| 112 |
+
# ... (rest of abstract/references boundary logic as before) ...
|
| 113 |
if abstract_match:
|
| 114 |
print(f"LT_Checker: Found 'abstract' at index {content_start_index} in its text.")
|
| 115 |
else:
|
| 116 |
print(f"LT_Checker: Did not find 'abstract', LT analysis from index 0 of its text.")
|
| 117 |
|
|
|
|
| 118 |
references_match = re.search(r'\breferences\b', text_for_lt_analysis_lower)
|
| 119 |
bibliography_match = re.search(r'\bbibliography\b', text_for_lt_analysis_lower)
|
| 120 |
content_end_index = len(text_for_lt_analysis)
|
|
|
|
| 141 |
raw_lt_matches = tool.check(text_for_lt_analysis)
|
| 142 |
|
| 143 |
lt_issues_in_range = 0
|
| 144 |
+
filtered_acronym_issues = 0
|
| 145 |
+
|
| 146 |
for idx, match in enumerate(raw_lt_matches):
|
| 147 |
if match.ruleId == "EN_SPLIT_WORDS_HYPHEN": continue # Common rule to ignore
|
| 148 |
|
| 149 |
+
# --- Acronym Filtering Step ---
|
| 150 |
+
if acronym_entities and _is_text_acronym_related(match.matchedText, acronym_entities):
|
| 151 |
+
filtered_acronym_issues += 1
|
| 152 |
+
continue # Skip this LanguageTool match as it's related to a detected acronym
|
| 153 |
+
|
| 154 |
if not (content_start_index <= match.offset < content_end_index):
|
| 155 |
continue
|
| 156 |
lt_issues_in_range += 1
|
| 157 |
|
| 158 |
+
error_text_verbatim = match.matchedText
|
| 159 |
+
words_around = 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
pre_error_text = text_for_lt_analysis[:match.offset]
|
| 161 |
words_before = pre_error_text.split()[-words_around:]
|
|
|
|
|
|
|
| 162 |
post_error_text = text_for_lt_analysis[match.offset + match.errorLength:]
|
| 163 |
words_after = post_error_text.split()[:words_around]
|
|
|
|
|
|
|
| 164 |
context_parts = []
|
| 165 |
+
if words_before: context_parts.append(" ".join(words_before))
|
| 166 |
+
context_parts.append(error_text_verbatim)
|
| 167 |
+
if words_after: context_parts.append(" ".join(words_after))
|
|
|
|
|
|
|
|
|
|
| 168 |
wider_context_str = " ".join(context_parts)
|
| 169 |
|
| 170 |
processed_lt_issues.append({
|
|
|
|
| 172 |
'ruleId': match.ruleId,
|
| 173 |
'message': match.message,
|
| 174 |
'context_text': wider_context_str,
|
| 175 |
+
'error_text_verbatim': error_text_verbatim,
|
| 176 |
'offset_in_text': match.offset,
|
| 177 |
'error_length': match.errorLength,
|
| 178 |
'replacements_suggestion': match.replacements[:3] if match.replacements else [],
|
|
|
|
| 182 |
'pdf_coordinates_list': [],
|
| 183 |
'mapped_page_number': -1
|
| 184 |
})
|
| 185 |
+
|
| 186 |
+
print(f"LT_Checker: LanguageTool found {len(raw_lt_matches)} raw issues.")
|
| 187 |
+
if acronym_entities:
|
| 188 |
+
print(f"LT_Checker: Filtered out {filtered_acronym_issues} LT issues due to acronym detection.")
|
| 189 |
+
print(f"LT_Checker: {lt_issues_in_range} LT issues within defined content range (after acronym filtering).")
|
| 190 |
|
| 191 |
return {
|
| 192 |
"total_issues": len(processed_lt_issues),
|