|
|
|
import re |
|
from typing import List, Dict, Any |
|
from collections import Counter |
|
|
|
def check_text_presence(full_text: str, search_terms: List[str]) -> Dict[str, bool]: |
|
full_text_lower = full_text.lower() |
|
return {term: term.lower() in full_text_lower for term in search_terms} |
|
|
|
def check_metadata(plain_text: str) -> Dict[str, Any]: |
|
word_count_val = len(plain_text.split()) |
|
return { |
|
"author_email": bool(re.search(r'\b[\w.-]+?@\w+?\.\w+?\b', plain_text)), |
|
"list_of_authors": bool(re.search(r'Authors?:', plain_text, re.IGNORECASE)), |
|
"keywords_list": bool(re.search(r'Keywords?:', plain_text, re.IGNORECASE)), |
|
"word_count": word_count_val if word_count_val > 0 else "Missing" |
|
} |
|
|
|
def check_disclosures(plain_text: str) -> Dict[str, bool]: |
|
search_terms = [ |
|
"conflict of interest statement", "ethics statement", |
|
"funding statement", "data access statement" |
|
] |
|
plain_text_lower = plain_text.lower() |
|
results = {term: term in plain_text_lower for term in search_terms} |
|
results["author contribution statement"] = ( |
|
"author contribution statement" in plain_text_lower or |
|
"author contributions statement" in plain_text_lower |
|
) |
|
return results |
|
|
|
def check_figures_and_tables(plain_text: str) -> Dict[str, bool]: |
|
return { |
|
"figures_with_citations": bool(re.search(r'Figure \d+.*?citation', plain_text, re.IGNORECASE)), |
|
"figures_legends": bool(re.search(r'Figure \d+.*?legend', plain_text, re.IGNORECASE)), |
|
"tables_legends": bool(re.search(r'Table \d+.*?legend', plain_text, re.IGNORECASE)) |
|
} |
|
|
|
def check_references_summary(plain_text: str) -> Dict[str, Any]: |
|
abstract_candidate = plain_text[:2500] |
|
return { |
|
"old_references": bool(re.search(r'\b19[0-9]{2}\b', plain_text)), |
|
"citations_in_abstract": bool(re.search(r'\[\d+\]', abstract_candidate)) or \ |
|
bool(re.search(r'\bcit(?:ation|ed)\b', abstract_candidate, re.IGNORECASE)), |
|
"reference_count": len(re.findall(r'\[\d+(?:,\s*\d+)*\]', plain_text)), |
|
"self_citations": bool(re.search(r'Self-citation', plain_text, re.IGNORECASE)) |
|
} |
|
|
|
def check_structure(plain_text: str) -> Dict[str, bool]: |
|
text_lower = plain_text.lower() |
|
imrad_present = all(section in text_lower for section in ["introduction", "method", "result", "discussion"]) |
|
|
|
return { |
|
"imrad_structure": imrad_present, |
|
"abstract_structure": "structured abstract" in text_lower |
|
} |
|
|
|
def check_figure_order(plain_text: str) -> Dict[str, Any]: |
|
figure_pattern = r'(?:Fig(?:ure)?\.?|Figure)\s*(\d+)' |
|
figure_references_str = re.findall(figure_pattern, plain_text, re.IGNORECASE) |
|
|
|
valid_figure_numbers_int = [int(num_str) for num_str in figure_references_str if num_str.isdigit()] |
|
|
|
unique_sorted_figures = sorted(list(set(valid_figure_numbers_int))) |
|
is_sequential = True |
|
if len(unique_sorted_figures) > 1: |
|
is_sequential = all(unique_sorted_figures[i] + 1 == unique_sorted_figures[i+1] for i in range(len(unique_sorted_figures)-1)) |
|
|
|
missing_figures = [] |
|
if unique_sorted_figures: |
|
max_fig = max(unique_sorted_figures) |
|
expected_figures = set(range(1, max_fig + 1)) |
|
missing_figures = sorted(list(expected_figures - set(unique_sorted_figures))) |
|
|
|
counts = Counter(valid_figure_numbers_int) |
|
duplicate_refs = [num for num, count in counts.items() if count > 1] |
|
|
|
return { |
|
"sequential_order_of_unique_figures": is_sequential, |
|
"figure_count_unique": len(unique_sorted_figures), |
|
"missing_figures_in_sequence_to_max": missing_figures, |
|
"figure_order_as_encountered": valid_figure_numbers_int, |
|
"duplicate_references_to_same_figure_number": duplicate_refs |
|
} |
|
|
|
def check_reference_order(plain_text: str) -> Dict[str, Any]: |
|
reference_pattern = r'\[(\d+)\]' |
|
references_str = re.findall(reference_pattern, plain_text) |
|
ref_numbers_int = [int(ref) for ref in references_str if ref.isdigit() and int(ref) > 0] |
|
|
|
max_ref_val = 0 |
|
out_of_order_details = [] |
|
is_ordered_in_text = True |
|
|
|
if ref_numbers_int: |
|
max_ref_val = max(ref_numbers_int) |
|
current_max_seen_in_text = 0 |
|
for i, ref in enumerate(ref_numbers_int): |
|
if ref < current_max_seen_in_text: |
|
out_of_order_details.append({ |
|
"position_in_text_occurrences": i + 1, "value": ref, |
|
"previous_max_value_seen": current_max_seen_in_text, |
|
"message": f"Reference [{ref}] appeared after a higher reference [{current_max_seen_in_text}] was already cited." |
|
}) |
|
current_max_seen_in_text = max(current_max_seen_in_text, ref) |
|
|
|
if len(ref_numbers_int) > 1: |
|
is_ordered_in_text = all(ref_numbers_int[i] <= ref_numbers_int[i+1] for i in range(len(ref_numbers_int)-1)) |
|
|
|
all_expected_refs_up_to_max = set(range(1, max_ref_val + 1)) if max_ref_val > 0 else set() |
|
used_refs_set = set(ref_numbers_int) |
|
missing_refs_in_sequence_to_max = sorted(list(all_expected_refs_up_to_max - used_refs_set)) |
|
|
|
return { |
|
"max_reference_number_cited": max_ref_val, |
|
"out_of_order_citations_details": out_of_order_details, |
|
"missing_references_up_to_max_cited": missing_refs_in_sequence_to_max, |
|
"is_citation_order_non_decreasing_in_text": is_ordered_in_text |
|
} |