import gradio as gr from transformers import pipeline from span_marker import SpanMarkerModel # Define the function def function(messages): # Load the pre-trained model from Hugging Face model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-base-acronyms") # Ensure the input is valid if messages: # Run inference on the input messages out = model.predict(messages) return out else: return "Please provide valid text input." # Set up the Gradio interface demo = gr.ChatInterface( fn=function, type="messages", examples=["Hello, I'm curious about abbreviations like NASA.", "Hola, ¿qué significa AI?", "Merhaba, kısaltmalar hakkında bilgi verir misiniz?"], title="Abbreviation Detector" ) # Launch the app if __name__ == "__main__": demo.launch()