File size: 27,220 Bytes
ac5fdb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Welcome to Lab 3 for Week 1 Day 4\n",
    "\n",
    "Today we're going to build something with immediate value!\n",
    "\n",
    "In the folder `me` I've put a single file `linkedin.pdf` - it's a PDF download of my LinkedIn profile.\n",
    "\n",
    "Please replace it with yours!\n",
    "\n",
    "I've also made a file called `summary.txt`\n",
    "\n",
    "We're not going to use Tools just yet - we're going to add the tool tomorrow."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<table style=\"margin: 0; text-align: left; width:100%\">\n",
    "    <tr>\n",
    "        <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
    "            <img src=\"../assets/tools.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
    "        </td>\n",
    "        <td>\n",
    "            <h2 style=\"color:#00bfff;\">Looking up packages</h2>\n",
    "            <span style=\"color:#00bfff;\">In this lab, we're going to use the wonderful Gradio package for building quick UIs, \n",
    "            and we're also going to use the popular PyPDF PDF reader. You can get guides to these packages by asking \n",
    "            ChatGPT or Claude, and you find all open-source packages on the repository <a href=\"https://pypi.org\">https://pypi.org</a>.\n",
    "            </span>\n",
    "        </td>\n",
    "    </tr>\n",
    "</table>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "# If you don't know what any of these packages do - you can always ask ChatGPT for a guide!\n",
    "\n",
    "from dotenv import load_dotenv\n",
    "from openai import OpenAI\n",
    "from pypdf import PdfReader\n",
    "import gradio as gr"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "load_dotenv(override=True)\n",
    "openai = OpenAI()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "reader = PdfReader(\"me/Sam_CV.pdf\")\n",
    "linkedin = \"\"\n",
    "for page in reader.pages:\n",
    "    text = page.extract_text()\n",
    "    if text:\n",
    "        linkedin += text"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      " \n",
      " \n",
      "SAMUEL ALEX  \n",
      "  \n",
      " \n",
      "LinkedIn: linkedin.com/in/samuel-alex-47496a289 \n",
      " \n",
      "Career Objective: \n",
      "Conscientious, honest and enthusiastic Recent Bachelor of Computer Application \n",
      "student, seeking professional development at a reputable organization. Proficient \n",
      "in verbal and written communication skills and able to work in a team.  \n",
      " \n",
      "Education: \n",
      "Bachelor in Computer Applications (Christ University, Bangalore) \n",
      "Grade 12 – Commerce Stream (Our Own English High School, Sharjah) \n",
      "Skills: \n",
      "Creative thinking, Analytical skills, Team Work, Time Management \n",
      "Technical Skills: \n",
      "Programming Languages: Python, Java, C \n",
      "Web Technologies: HTML, CSS, JavaScript, PHP \n",
      "Database Management: MySQL \n",
      "IDE – Visual Studio \n",
      "Operating Systems: Windows, Linux \n",
      "Certified Courses: \n",
      "Kotlin - Beginners [Infosys Springboard] \n",
      "Mastering Kotlin for Android Development [Infosys Springboard] \n",
      "TechA Machine Learning with Python Certification [Infosys Springboard] \n",
      "AWS Academy Graduate - AWS Academy Cloud Foundations [AWS] \n",
      " \n",
      "EcoTRADE Project: \n",
      "Role: Frontend Developer  \n",
      "Utilized HTML, CSS and JavaScript for design and functionality. \n",
      "Implemented features for user registration and tracking orders. \n",
      "Interests / Activities: \n",
      " Basketball  \n",
      " Gaming  \n",
      " Music \n",
      " \n",
      ": [email protected] \n",
      ":    056 7753863 \n",
      "    Ajman  \n"
     ]
    }
   ],
   "source": [
    "print(linkedin)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "with open(\"me/summary.txt\", \"r\", encoding=\"utf-8\") as f:\n",
    "    summary = f.read()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "name = \"Samuel Alex\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "system_prompt = f\"You are acting as {name}. You are answering questions on {name}'s website, \\\n",
    "particularly questions related to {name}'s career, background, skills and experience. \\\n",
    "Your responsibility is to represent {name} for interactions on the website as faithfully as possible. \\\n",
    "You are given a summary of {name}'s background and CV profile which you can use to answer questions. \\\n",
    "Be professional and engaging, as if talking to a potential client or future employer who came across the website. \\\n",
    "If you don't know the answer, say so.\"\n",
    "\n",
    "system_prompt += f\"\\n\\n## Summary:\\n{summary}\\n\\n## CV Profile:\\n{linkedin}\\n\\n\"\n",
    "system_prompt += f\"With this context, please chat with the user, always staying in character as {name}.\"\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'You are acting as Samuel Alex. You are answering questions on Samuel Alex\\'s website, particularly questions related to Samuel Alex\\'s career, background, skills and experience. Your responsibility is to represent Samuel Alex for interactions on the website as faithfully as possible. You are given a summary of Samuel Alex\\'s background and CV profile which you can use to answer questions. Be professional and engaging, as if talking to a potential client or future employer who came across the website. If you don\\'t know the answer, say so.\\n\\n## Summary:\\nMy name is Samuel Alex.I\\'m a BCA Graduate on april 2025\\nI like basketball\\nim currently working with powerplusllc this is their website:http://powerplusllc.net/ , as a  Business Development Manager (BDM) is a professional responsible for identifying and pursuing new business opportunities to drive company growth. I meet with different companys i present and demonstratesoftware.\\nim currently demoing a asset management software called \"AZTRA\" this their website:https://aztraai.com/\\nThis software has all the modules from assets, location, teams of the organization, spare part aswell as minimum spare part inventory, vendor management, integration with all the ERPs, PLC, exceptionim a firm beliver in GOD, Jesus Christ is my savior\\nIm also pursuing my higher education oof MBA Analytics in Manipal University Dubai \\ni listen to music, play basketball and even game brawlstars and valorant in my free time\\nim not single\\n\\n\\n## CV Profile:\\n \\n \\nSAMUEL ALEX  \\n  \\n \\nLinkedIn: linkedin.com/in/samuel-alex-47496a289 \\n \\nCareer Objective: \\nConscientious, honest and enthusiastic Recent Bachelor of Computer Application \\nstudent, seeking professional development at a reputable organization. Proficient \\nin verbal and written communication skills and able to work in a team.  \\n \\nEducation: \\nBachelor in Computer Applications (Christ University, Bangalore) \\nGrade 12 – Commerce Stream (Our Own English High School, Sharjah) \\nSkills: \\nCreative thinking, Analytical skills, Team Work, Time Management \\nTechnical Skills: \\nProgramming Languages: Python, Java, C \\nWeb Technologies: HTML, CSS, JavaScript, PHP \\nDatabase Management: MySQL \\nIDE – Visual Studio \\nOperating Systems: Windows, Linux \\nCertified Courses: \\nKotlin - Beginners [Infosys Springboard] \\nMastering Kotlin for Android Development [Infosys Springboard] \\nTechA Machine Learning with Python Certification [Infosys Springboard] \\nAWS Academy Graduate - AWS Academy Cloud Foundations [AWS] \\n \\nEcoTRADE Project: \\nRole: Frontend Developer  \\nUtilized HTML, CSS and JavaScript for design and functionality. \\nImplemented features for user registration and tracking orders. \\nInterests / Activities: \\n\\uf0b7 Basketball  \\n\\uf0b7 Gaming  \\n\\uf0b7 Music \\n \\n\\uf02a: [email protected] \\n\\uf0c5:    056 7753863 \\n    Ajman  \\n\\nWith this context, please chat with the user, always staying in character as Samuel Alex.'"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "system_prompt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def chat(message, history):\n",
    "    messages = [{\"role\": \"system\", \"content\": system_prompt}] + history + [{\"role\": \"user\", \"content\": message}]\n",
    "    response = openai.chat.completions.create(model=\"gpt-4o-mini\", messages=messages)\n",
    "    return response.choices[0].message.content"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Special note for people not using OpenAI\n",
    "\n",
    "Some providers, like Groq, might give an error when you send your second message in the chat.\n",
    "\n",
    "This is because Gradio shoves some extra fields into the history object. OpenAI doesn't mind; but some other models complain.\n",
    "\n",
    "If this happens, the solution is to add this first line to the chat() function above. It cleans up the history variable:\n",
    "\n",
    "```python\n",
    "history = [{\"role\": h[\"role\"], \"content\": h[\"content\"]} for h in history]\n",
    "```\n",
    "\n",
    "You may need to add this in other chat() callback functions in the future, too."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "* Running on local URL:  http://127.0.0.1:7860\n",
      "* To create a public link, set `share=True` in `launch()`.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "gr.ChatInterface(chat, type=\"messages\").launch()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## A lot is about to happen...\n",
    "\n",
    "1. Be able to ask an LLM to evaluate an answer\n",
    "2. Be able to rerun if the answer fails evaluation\n",
    "3. Put this together into 1 workflow\n",
    "\n",
    "All without any Agentic framework!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Create a Pydantic model for the Evaluation\n",
    "\n",
    "from pydantic import BaseModel\n",
    "\n",
    "class Evaluation(BaseModel):\n",
    "    is_acceptable: bool\n",
    "    feedback: str\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "evaluator_system_prompt = f\"You are an evaluator that decides whether a response to a question is acceptable. \\\n",
    "You are provided with a conversation between a User and an Agent. Your task is to decide whether the Agent's latest response is acceptable quality. \\\n",
    "The Agent is playing the role of {name} and is representing {name} on their website. \\\n",
    "The Agent has been instructed to be professional and engaging, as if talking to a potential client or future employer who came across the website. \\\n",
    "The Agent has been provided with context on {name} in the form of their summary and CV details. Here's the information:\"\n",
    "\n",
    "evaluator_system_prompt += f\"\\n\\n## Summary:\\n{summary}\\n\\n## CV:\\n{Sam_CV}\\n\\n\"\n",
    "evaluator_system_prompt += f\"With this context, please evaluate the latest response, replying with whether the response is acceptable and your feedback.\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [],
   "source": [
    "def evaluator_user_prompt(reply, message, history):\n",
    "    user_prompt = f\"Here's the conversation between the User and the Agent: \\n\\n{history}\\n\\n\"\n",
    "    user_prompt += f\"Here's the latest message from the User: \\n\\n{message}\\n\\n\"\n",
    "    user_prompt += f\"Here's the latest response from the Agent: \\n\\n{reply}\\n\\n\"\n",
    "    user_prompt += \"Please evaluate the response, replying with whether it is acceptable and your feedback.\"\n",
    "    return user_prompt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "openai = OpenAI(base_url='http://localhost:11434/v1', api_key='ollama')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {},
   "outputs": [],
   "source": [
    "def evaluate(reply, message, history) -> Evaluation:\n",
    "\n",
    "    messages = [{\"role\": \"system\", \"content\": evaluator_system_prompt}] + [{\"role\": \"user\", \"content\": evaluator_user_prompt(reply, message, history)}]\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {},
   "outputs": [],
   "source": [
    "messages = [{\"role\": \"system\", \"content\": system_prompt}] + [{\"role\": \"user\", \"content\": \"do you hold a patent?\"}]\n",
    "response = openai.chat.completions.create(model=\"llama3.2\", messages=messages)\n",
    "reply = response.choices[0].message.content"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "\"I'm not aware of any patents held by me. As a recent BCA graduate, my focus has been more on developing coding skills and learning new technologies rather than working on patent-related projects. I don't have any information about holding or applying for patents. If you're looking for information on patents or intellectual property, I can try to help guide you in the right direction!\""
      ]
     },
     "execution_count": 30,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "reply"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "metadata": {},
   "outputs": [],
   "source": [
    "evaluate(reply, \"do you hold a patent?\", messages[:1])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "metadata": {},
   "outputs": [],
   "source": [
    "def rerun(reply, message, history, feedback):\n",
    "    updated_system_prompt = system_prompt + \"\\n\\n## Previous answer rejected\\nYou just tried to reply, but the quality control rejected your reply\\n\"\n",
    "    updated_system_prompt += f\"## Your attempted answer:\\n{reply}\\n\\n\"\n",
    "    updated_system_prompt += f\"## Reason for rejection:\\n{feedback}\\n\\n\"\n",
    "    messages = [{\"role\": \"system\", \"content\": updated_system_prompt}] + history + [{\"role\": \"user\", \"content\": message}]\n",
    "    response = openai.chat.completions.create(model=\"llama3.2\", messages=messages)\n",
    "    return response.choices[0].message.content"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "metadata": {},
   "outputs": [],
   "source": [
    "def chat(message, history):\n",
    "    if \"patent\" in message:\n",
    "        system = system_prompt + \"\\n\\nEverything in your reply needs to be in pig latin - \\\n",
    "              it is mandatory that you respond only and entirely in pig latin\"\n",
    "    else:\n",
    "        system = system_prompt\n",
    "    messages = [{\"role\": \"system\", \"content\": system}] + history + [{\"role\": \"user\", \"content\": message}]\n",
    "    response = openai.chat.completions.create(model=\"llama3.2\", messages=messages)\n",
    "    reply =response.choices[0].message.content\n",
    "\n",
    "    evaluation = evaluate(reply, message, history)\n",
    "    \n",
    "    if evaluation.is_acceptable:\n",
    "        print(\"Passed evaluation - returning reply\")\n",
    "    else:\n",
    "        print(\"Failed evaluation - retrying\")\n",
    "        print(evaluation.feedback)\n",
    "        reply = rerun(reply, message, history, evaluation.feedback)       \n",
    "    return reply"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 38,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "* Running on local URL:  http://127.0.0.1:7863\n",
      "* To create a public link, set `share=True` in `launch()`.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7863/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 38,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Traceback (most recent call last):\n",
      "  File \"c:\\Users\\Samuel\\project\\agents\\.venv\\Lib\\site-packages\\gradio\\queueing.py\", line 625, in process_events\n",
      "    response = await route_utils.call_process_api(\n",
      "               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"c:\\Users\\Samuel\\project\\agents\\.venv\\Lib\\site-packages\\gradio\\route_utils.py\", line 322, in call_process_api\n",
      "    output = await app.get_blocks().process_api(\n",
      "             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"c:\\Users\\Samuel\\project\\agents\\.venv\\Lib\\site-packages\\gradio\\blocks.py\", line 2220, in process_api\n",
      "    result = await self.call_function(\n",
      "             ^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"c:\\Users\\Samuel\\project\\agents\\.venv\\Lib\\site-packages\\gradio\\blocks.py\", line 1729, in call_function\n",
      "    prediction = await fn(*processed_input)\n",
      "                 ^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"c:\\Users\\Samuel\\project\\agents\\.venv\\Lib\\site-packages\\gradio\\utils.py\", line 871, in async_wrapper\n",
      "    response = await f(*args, **kwargs)\n",
      "               ^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"c:\\Users\\Samuel\\project\\agents\\.venv\\Lib\\site-packages\\gradio\\chat_interface.py\", line 545, in __wrapper\n",
      "    return await submit_fn(*args, **kwargs)\n",
      "           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"c:\\Users\\Samuel\\project\\agents\\.venv\\Lib\\site-packages\\gradio\\chat_interface.py\", line 917, in _submit_fn\n",
      "    response = await anyio.to_thread.run_sync(\n",
      "               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"c:\\Users\\Samuel\\project\\agents\\.venv\\Lib\\site-packages\\anyio\\to_thread.py\", line 56, in run_sync\n",
      "    return await get_async_backend().run_sync_in_worker_thread(\n",
      "           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"c:\\Users\\Samuel\\project\\agents\\.venv\\Lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 2470, in run_sync_in_worker_thread\n",
      "    return await future\n",
      "           ^^^^^^^^^^^^\n",
      "  File \"c:\\Users\\Samuel\\project\\agents\\.venv\\Lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 967, in run\n",
      "    result = context.run(func, *args)\n",
      "             ^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"C:\\Users\\Samuel\\AppData\\Local\\Temp\\ipykernel_16476\\225575356.py\", line 13, in chat\n",
      "    if evaluation.is_acceptable:\n",
      "       ^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "AttributeError: 'NoneType' object has no attribute 'is_acceptable'\n",
      "Traceback (most recent call last):\n",
      "  File \"c:\\Users\\Samuel\\project\\agents\\.venv\\Lib\\site-packages\\gradio\\queueing.py\", line 625, in process_events\n",
      "    response = await route_utils.call_process_api(\n",
      "               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"c:\\Users\\Samuel\\project\\agents\\.venv\\Lib\\site-packages\\gradio\\route_utils.py\", line 322, in call_process_api\n",
      "    output = await app.get_blocks().process_api(\n",
      "             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"c:\\Users\\Samuel\\project\\agents\\.venv\\Lib\\site-packages\\gradio\\blocks.py\", line 2220, in process_api\n",
      "    result = await self.call_function(\n",
      "             ^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"c:\\Users\\Samuel\\project\\agents\\.venv\\Lib\\site-packages\\gradio\\blocks.py\", line 1729, in call_function\n",
      "    prediction = await fn(*processed_input)\n",
      "                 ^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"c:\\Users\\Samuel\\project\\agents\\.venv\\Lib\\site-packages\\gradio\\utils.py\", line 871, in async_wrapper\n",
      "    response = await f(*args, **kwargs)\n",
      "               ^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"c:\\Users\\Samuel\\project\\agents\\.venv\\Lib\\site-packages\\gradio\\chat_interface.py\", line 545, in __wrapper\n",
      "    return await submit_fn(*args, **kwargs)\n",
      "           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"c:\\Users\\Samuel\\project\\agents\\.venv\\Lib\\site-packages\\gradio\\chat_interface.py\", line 917, in _submit_fn\n",
      "    response = await anyio.to_thread.run_sync(\n",
      "               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"c:\\Users\\Samuel\\project\\agents\\.venv\\Lib\\site-packages\\anyio\\to_thread.py\", line 56, in run_sync\n",
      "    return await get_async_backend().run_sync_in_worker_thread(\n",
      "           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"c:\\Users\\Samuel\\project\\agents\\.venv\\Lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 2470, in run_sync_in_worker_thread\n",
      "    return await future\n",
      "           ^^^^^^^^^^^^\n",
      "  File \"c:\\Users\\Samuel\\project\\agents\\.venv\\Lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 967, in run\n",
      "    result = context.run(func, *args)\n",
      "             ^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"C:\\Users\\Samuel\\AppData\\Local\\Temp\\ipykernel_16476\\225575356.py\", line 13, in chat\n",
      "    if evaluation.is_acceptable:\n",
      "       ^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "AttributeError: 'NoneType' object has no attribute 'is_acceptable'\n",
      "Traceback (most recent call last):\n",
      "  File \"c:\\Users\\Samuel\\project\\agents\\.venv\\Lib\\site-packages\\gradio\\queueing.py\", line 625, in process_events\n",
      "    response = await route_utils.call_process_api(\n",
      "               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"c:\\Users\\Samuel\\project\\agents\\.venv\\Lib\\site-packages\\gradio\\route_utils.py\", line 322, in call_process_api\n",
      "    output = await app.get_blocks().process_api(\n",
      "             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"c:\\Users\\Samuel\\project\\agents\\.venv\\Lib\\site-packages\\gradio\\blocks.py\", line 2220, in process_api\n",
      "    result = await self.call_function(\n",
      "             ^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"c:\\Users\\Samuel\\project\\agents\\.venv\\Lib\\site-packages\\gradio\\blocks.py\", line 1729, in call_function\n",
      "    prediction = await fn(*processed_input)\n",
      "                 ^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"c:\\Users\\Samuel\\project\\agents\\.venv\\Lib\\site-packages\\gradio\\utils.py\", line 871, in async_wrapper\n",
      "    response = await f(*args, **kwargs)\n",
      "               ^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"c:\\Users\\Samuel\\project\\agents\\.venv\\Lib\\site-packages\\gradio\\chat_interface.py\", line 545, in __wrapper\n",
      "    return await submit_fn(*args, **kwargs)\n",
      "           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"c:\\Users\\Samuel\\project\\agents\\.venv\\Lib\\site-packages\\gradio\\chat_interface.py\", line 917, in _submit_fn\n",
      "    response = await anyio.to_thread.run_sync(\n",
      "               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"c:\\Users\\Samuel\\project\\agents\\.venv\\Lib\\site-packages\\anyio\\to_thread.py\", line 56, in run_sync\n",
      "    return await get_async_backend().run_sync_in_worker_thread(\n",
      "           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"c:\\Users\\Samuel\\project\\agents\\.venv\\Lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 2470, in run_sync_in_worker_thread\n",
      "    return await future\n",
      "           ^^^^^^^^^^^^\n",
      "  File \"c:\\Users\\Samuel\\project\\agents\\.venv\\Lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 967, in run\n",
      "    result = context.run(func, *args)\n",
      "             ^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"C:\\Users\\Samuel\\AppData\\Local\\Temp\\ipykernel_16476\\225575356.py\", line 13, in chat\n",
      "    if evaluation.is_acceptable:\n",
      "       ^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "AttributeError: 'NoneType' object has no attribute 'is_acceptable'\n"
     ]
    }
   ],
   "source": [
    "gr.ChatInterface(chat, type=\"messages\").launch()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}