Update gradio version and fix error logging
Browse files
README.md
CHANGED
|
@@ -4,7 +4,7 @@ emoji: 📚
|
|
| 4 |
colorFrom: green
|
| 5 |
colorTo: blue
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
|
|
|
| 4 |
colorFrom: green
|
| 5 |
colorTo: blue
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.38.1
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: mit
|
app.py
CHANGED
|
@@ -52,6 +52,7 @@ our funders that it is being used. Thank you!
|
|
| 52 |
# """
|
| 53 |
|
| 54 |
article = """
|
|
|
|
| 55 |
|
| 56 |
Note that running here with the "TT3D" model does not run structure prediction on the sequences, but rather uses the [ProstT5](https://github.com/mheinzinger/ProstT5) language model to
|
| 57 |
translate amino acid to 3di sequences. This is much faster than running structure prediction, but the results may not be as accurate.
|
|
@@ -95,7 +96,8 @@ def predict(model_name, pairs_file, sequence_file, progress = gr.Progress()):
|
|
| 95 |
# gr.Info("Loading files...")
|
| 96 |
try:
|
| 97 |
seqs = SeqIO.to_dict(SeqIO.parse(sequence_file.name, "fasta"))
|
| 98 |
-
except ValueError as
|
|
|
|
| 99 |
raise gr.Error("Invalid FASTA file - duplicate entry")
|
| 100 |
|
| 101 |
if Path(pairs_file.name).suffix == ".csv":
|
|
@@ -104,7 +106,8 @@ def predict(model_name, pairs_file, sequence_file, progress = gr.Progress()):
|
|
| 104 |
pairs = pd.read_csv(pairs_file.name, sep="\t")
|
| 105 |
try:
|
| 106 |
pairs.columns = ["protein1", "protein2"]
|
| 107 |
-
except ValueError as
|
|
|
|
| 108 |
raise gr.Error("Invalid pairs file - must have two columns 'protein1' and 'protein2'")
|
| 109 |
|
| 110 |
do_foldseek = False
|
|
@@ -134,6 +137,7 @@ def predict(model_name, pairs_file, sequence_file, progress = gr.Progress()):
|
|
| 134 |
# print(foldseek_embeddings[k])
|
| 135 |
# print(foldseek_embeddings[k].shape)
|
| 136 |
|
|
|
|
| 137 |
progress(0, desc="Starting...")
|
| 138 |
results = []
|
| 139 |
for i in progress.tqdm(range(len(pairs))):
|
|
@@ -165,7 +169,8 @@ def predict(model_name, pairs_file, sequence_file, progress = gr.Progress()):
|
|
| 165 |
return results, file_path
|
| 166 |
|
| 167 |
except Exception as e:
|
| 168 |
-
|
|
|
|
| 169 |
return None, None
|
| 170 |
|
| 171 |
demo = gr.Interface(
|
|
@@ -177,13 +182,13 @@ demo = gr.Interface(
|
|
| 177 |
],
|
| 178 |
outputs = [
|
| 179 |
gr.DataFrame(label='Results', headers=['Protein 1', 'Protein 2', 'Interaction']),
|
| 180 |
-
gr.File(label="Download results", type="
|
| 181 |
],
|
| 182 |
-
|
| 183 |
-
|
| 184 |
article = article,
|
| 185 |
theme = theme,
|
| 186 |
)
|
| 187 |
|
| 188 |
if __name__ == "__main__":
|
| 189 |
-
demo.queue(max_size=20).launch()
|
|
|
|
| 52 |
# """
|
| 53 |
|
| 54 |
article = """
|
| 55 |
+
Pairs file should be a comma-separated or tab-separated (.csv/.tsv) file with two columns, "protein1" and "protein2", where each row contains the names of two proteins. The sequences should be a FASTA file with the corresponding protein names as the headers.
|
| 56 |
|
| 57 |
Note that running here with the "TT3D" model does not run structure prediction on the sequences, but rather uses the [ProstT5](https://github.com/mheinzinger/ProstT5) language model to
|
| 58 |
translate amino acid to 3di sequences. This is much faster than running structure prediction, but the results may not be as accurate.
|
|
|
|
| 96 |
# gr.Info("Loading files...")
|
| 97 |
try:
|
| 98 |
seqs = SeqIO.to_dict(SeqIO.parse(sequence_file.name, "fasta"))
|
| 99 |
+
except ValueError as e:
|
| 100 |
+
print(e)
|
| 101 |
raise gr.Error("Invalid FASTA file - duplicate entry")
|
| 102 |
|
| 103 |
if Path(pairs_file.name).suffix == ".csv":
|
|
|
|
| 106 |
pairs = pd.read_csv(pairs_file.name, sep="\t")
|
| 107 |
try:
|
| 108 |
pairs.columns = ["protein1", "protein2"]
|
| 109 |
+
except ValueError as e:
|
| 110 |
+
print(e)
|
| 111 |
raise gr.Error("Invalid pairs file - must have two columns 'protein1' and 'protein2'")
|
| 112 |
|
| 113 |
do_foldseek = False
|
|
|
|
| 137 |
# print(foldseek_embeddings[k])
|
| 138 |
# print(foldseek_embeddings[k].shape)
|
| 139 |
|
| 140 |
+
print("Starting predictions")
|
| 141 |
progress(0, desc="Starting...")
|
| 142 |
results = []
|
| 143 |
for i in progress.tqdm(range(len(pairs))):
|
|
|
|
| 169 |
return results, file_path
|
| 170 |
|
| 171 |
except Exception as e:
|
| 172 |
+
print(e)
|
| 173 |
+
raise gr.Error(e)
|
| 174 |
return None, None
|
| 175 |
|
| 176 |
demo = gr.Interface(
|
|
|
|
| 182 |
],
|
| 183 |
outputs = [
|
| 184 |
gr.DataFrame(label='Results', headers=['Protein 1', 'Protein 2', 'Interaction']),
|
| 185 |
+
gr.File(label="Download results", type="filepath")
|
| 186 |
],
|
| 187 |
+
title = title,
|
| 188 |
+
description = description,
|
| 189 |
article = article,
|
| 190 |
theme = theme,
|
| 191 |
)
|
| 192 |
|
| 193 |
if __name__ == "__main__":
|
| 194 |
+
demo.queue(max_size=20).launch()
|