import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Setup
st.set_page_config(page_title="Noor-e-Hidayat 🌙", layout="centered")
st.markdown("
🌙 Noor-e-Hidayat – Islamic Chatbot
", unsafe_allow_html=True)
st.markdown("Ask anything based on the Qur’an. This assistant replies gently, spiritually, and with reference.")
# Load model
model_id = "llm-soda/quran-qa-phi-2"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
# Chat history in session
if "messages" not in st.session_state:
st.session_state.messages = []
# Chat input box
user_input = st.chat_input("Type your question about Islam...")
if user_input:
# Save user message
st.session_state.messages.append({"role": "user", "content": user_input})
# Generate bot reply
with st.spinner("Answering with Qur’an wisdom..."):
prompt = f"Answer the following Islamic question with Qur’an-based reasoning and reference:\nQuestion: {user_input}\nAnswer:"
inputs = tokenizer(prompt, return_tensors="pt", truncation=True).to("cuda" if torch.cuda.is_available() else "cpu")
outputs = model.generate(**inputs, max_new_tokens=300)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
response = response.replace(prompt, "").strip()
# Save bot message
st.session_state.messages.append({"role": "bot", "content": response})
# Display chat messages like ChatGPT
for msg in st.session_state.messages:
if msg["role"] == "user":
with st.chat_message("user"):
st.markdown(msg["content"])
else:
with st.chat_message("assistant"):
st.markdown(msg["content"])