Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,24 @@
|
|
1 |
-
import
|
2 |
-
from
|
3 |
-
|
4 |
-
""
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
-
|
62 |
-
|
63 |
-
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
|
4 |
+
st.title("🌙 Noor-e-Hidayat – Islamic AI Chatbot")
|
5 |
+
|
6 |
+
# Load model
|
7 |
+
model_id = "Ellbendls/Qwen3-4b-Quran-LoRA-Fine-Tuned"
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(model_id)
|
10 |
+
|
11 |
+
# Input
|
12 |
+
user_input = st.text_input("🕊️ Ask a question based on Qur’an or Hadith:")
|
13 |
+
|
14 |
+
if user_input:
|
15 |
+
st.write("🤖 Generating answer...")
|
16 |
+
|
17 |
+
prompt = f"Answer the following with Qur’an-based reasoning:\nQuestion: {user_input}\nAnswer:"
|
18 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
|
19 |
+
outputs = model.generate(**inputs, max_new_tokens=300)
|
20 |
+
|
21 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
22 |
+
|
23 |
+
st.markdown("### 📜 Answer:")
|
24 |
+
st.write(response)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|