petrojm commited on
Commit
883864f
·
1 Parent(s): 7801fa3

changes to app

Browse files
Files changed (1) hide show
  1. app.py +1 -6
app.py CHANGED
@@ -7,7 +7,6 @@ import uuid
7
  current_dir = os.path.dirname(os.path.abspath(__file__))
8
 
9
  from src.document_retrieval import DocumentRetrieval
10
- from utils.visual.env_utils import env_input_fields, initialize_env_variables, are_credentials_set, save_credentials
11
  from utils.parsing.sambaparse import parse_doc_universal # added
12
  from utils.vectordb.vector_db import VectorDb
13
 
@@ -36,14 +35,13 @@ def process_documents(files, collection_name, document_retrieval, vectorstore, c
36
  document_retrieval = DocumentRetrieval()
37
  _, _, text_chunks = parse_doc_universal(doc=files)
38
  print(len(text_chunks))
39
- print(text_chunks)
40
  embeddings = document_retrieval.load_embedding_model()
41
  collection_id = str(uuid.uuid4())
42
  collection_name = f"collection_{collection_id}"
43
  vectorstore = document_retrieval.create_vector_store(text_chunks, embeddings, output_db=save_location, collection_name=collection_name)
44
  document_retrieval.init_retriever(vectorstore)
45
  conversation_chain = document_retrieval.get_qa_retrieval_chain()
46
- #input_disabled = False
47
  return conversation_chain, vectorstore, document_retrieval, collection_name, "Complete! You can now ask questions."
48
  except Exception as e:
49
  return conversation_chain, vectorstore, document_retrieval, collection_name, f"An error occurred while processing: {str(e)}"
@@ -54,9 +52,6 @@ with open(CONFIG_PATH, 'r') as yaml_file:
54
 
55
  prod_mode = config.get('prod_mode', False)
56
 
57
- # Load env variables
58
- initialize_env_variables(prod_mode)
59
-
60
  caution_text = """⚠️ Note: depending on the size of your document, this could take several minutes.
61
  """
62
 
 
7
  current_dir = os.path.dirname(os.path.abspath(__file__))
8
 
9
  from src.document_retrieval import DocumentRetrieval
 
10
  from utils.parsing.sambaparse import parse_doc_universal # added
11
  from utils.vectordb.vector_db import VectorDb
12
 
 
35
  document_retrieval = DocumentRetrieval()
36
  _, _, text_chunks = parse_doc_universal(doc=files)
37
  print(len(text_chunks))
38
+ print(text_chunks[0])
39
  embeddings = document_retrieval.load_embedding_model()
40
  collection_id = str(uuid.uuid4())
41
  collection_name = f"collection_{collection_id}"
42
  vectorstore = document_retrieval.create_vector_store(text_chunks, embeddings, output_db=save_location, collection_name=collection_name)
43
  document_retrieval.init_retriever(vectorstore)
44
  conversation_chain = document_retrieval.get_qa_retrieval_chain()
 
45
  return conversation_chain, vectorstore, document_retrieval, collection_name, "Complete! You can now ask questions."
46
  except Exception as e:
47
  return conversation_chain, vectorstore, document_retrieval, collection_name, f"An error occurred while processing: {str(e)}"
 
52
 
53
  prod_mode = config.get('prod_mode', False)
54
 
 
 
 
55
  caution_text = """⚠️ Note: depending on the size of your document, this could take several minutes.
56
  """
57