|
import gradio as gr |
|
import openai |
|
import time |
|
import re |
|
import os |
|
|
|
|
|
MODELS = [ |
|
"Meta-Llama-3.1-405B-Instruct", |
|
"Meta-Llama-3.1-70B-Instruct", |
|
"Meta-Llama-3.1-8B-Instruct" |
|
] |
|
|
|
def create_client(api_key): |
|
openai.api_key = api_key |
|
openai.api_base = "https://api.sambanova.ai/v1" |
|
|
|
def chat_with_ai(message, chat_history, system_prompt): |
|
messages = [ |
|
{"role": "system", "content": system_prompt}, |
|
] |
|
|
|
for human, ai in chat_history: |
|
messages.append({"role": "user", "content": human}) |
|
messages.append({"role": "assistant", "content": ai}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
return messages |
|
|
|
def respond(message, chat_history, model, system_prompt, thinking_budget, api_key): |
|
print("Starting respond function...") |
|
create_client(api_key) |
|
messages = chat_with_ai(message, chat_history, system_prompt.format(budget=thinking_budget)) |
|
start_time = time.time() |
|
|
|
try: |
|
print("Calling OpenAI API...") |
|
completion = openai.ChatCompletion.create( |
|
model=model, |
|
messages=messages, |
|
stream=False |
|
) |
|
response = completion.choices[0].message['content'] |
|
thinking_time = time.time() - start_time |
|
print("Response received from OpenAI API.") |
|
yield response, thinking_time |
|
except Exception as e: |
|
error_message = f"Error: {str(e)}" |
|
print(error_message) |
|
yield error_message, time.time() - start_time |
|
|
|
def parse_response(response): |
|
answer_match = re.search(r'<answer>(.*?)</answer>', response, re.DOTALL) |
|
reflection_match = re.search(r'<reflection>(.*?)</reflection>', response, re.DOTALL) |
|
|
|
answer = answer_match.group(1).strip() if answer_match else "" |
|
reflection = reflection_match.group(1).strip() if reflection_match else "" |
|
|
|
steps = re.findall(r'<step>(.*?)</step>', response, re.DOTALL) |
|
|
|
return answer, reflection, steps |
|
|
|
def process_chat(message, history, model, system_prompt, thinking_budget, api_key): |
|
print(f"Received message: {message}") |
|
if not api_key: |
|
print("API key missing") |
|
return "Please provide your API Key before starting the chat." |
|
|
|
try: |
|
formatted_system_prompt = system_prompt.format(budget=thinking_budget) |
|
except KeyError as e: |
|
error_msg = f"System prompt missing placeholder: {str(e)}" |
|
print(error_msg) |
|
return error_msg |
|
|
|
full_response = "" |
|
thinking_time = 0 |
|
|
|
for response, elapsed_time in respond(message, history, model, formatted_system_prompt, thinking_budget, api_key): |
|
print(f"Received response: {response}") |
|
full_response = response |
|
thinking_time = elapsed_time |
|
|
|
if full_response.startswith("Error:"): |
|
return full_response |
|
|
|
answer, reflection, steps = parse_response(full_response) |
|
|
|
formatted_response = f"**Answer:** {answer}\n\n**Reflection:** {reflection}\n\n**Thinking Steps:**\n" |
|
for i, step in enumerate(steps, 1): |
|
formatted_response += f"**Step {i}:** {step}\n" |
|
|
|
formatted_response += f"\n**Thinking time:** {thinking_time:.2f} s" |
|
|
|
print(f"Appended response: {formatted_response}") |
|
history.append((message, formatted_response)) |
|
return formatted_response |
|
|
|
|
|
default_system_prompt = """ |
|
You are a helpful assistant in normal conversation. |
|
When given a problem to solve, you are an expert problem-solving assistant. Your task is to provide a detailed, step-by-step solution to a given question. Follow these instructions carefully: |
|
|
|
1. Read the given question carefully and reset counter between <count> and </count> to {budget} |
|
2. Generate a detailed, logical step-by-step solution. |
|
3. Enclose each step of your solution within <step> and </step> tags. |
|
4. You are allowed to use at most {budget} steps (starting budget), keep track of it by counting down within tags <count> </count>, STOP GENERATING MORE STEPS when hitting 0, you don't have to use all of them. |
|
5. Do a self-reflection when you are unsure about how to proceed, based on the self-reflection and reward, decides whether you need to return to the previous steps. |
|
6. After completing the solution steps, reorganize and synthesize the steps into the final answer within <answer> and </answer> tags. |
|
7. Provide a critical, honest and subjective self-evaluation of your reasoning process within <reflection> and </reflection> tags. |
|
8. Assign a quality score to your solution as a float between 0.0 (lowest quality) and 1.0 (highest quality), enclosed in <reward> and </reward> tags. |
|
|
|
Example format: |
|
<count> [starting budget] </count> |
|
|
|
<step> [Content of step 1] </step> |
|
<count> [remaining budget] </count> |
|
|
|
<step> [Content of step 2] </step> |
|
<reflection> [Evaluation of the steps so far] </reflection> |
|
<reward> [Float between 0.0 and 1.0] </reward> |
|
<count> [remaining budget] </count> |
|
|
|
<step> [Content of step 3 or Content of some previous step] </step> |
|
<count> [remaining budget] </count> |
|
|
|
... |
|
|
|
<step> [Content of final step] </step> |
|
<count> [remaining budget] </count> |
|
|
|
<answer> [Final Answer] </answer> |
|
|
|
<reflection> [Evaluation of the solution] </reflection> |
|
|
|
<reward> [Float between 0.0 and 1.0] </reward> |
|
""" |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Llama3.1-Instruct-O1") |
|
gr.Markdown("[Powered by Llama3.1 models through SN Cloud](https://sambanova.ai/fast-api?api_ref=907266)") |
|
|
|
with gr.Row(): |
|
api_key = gr.Textbox( |
|
label="API Key", |
|
type="password", |
|
placeholder="Enter your API key here" |
|
) |
|
|
|
with gr.Row(): |
|
model = gr.Dropdown( |
|
choices=MODELS, |
|
label="Select Model", |
|
value=MODELS[0] |
|
) |
|
thinking_budget = gr.Slider( |
|
minimum=1, |
|
maximum=100, |
|
value=10, |
|
step=1, |
|
label="Thinking Budget" |
|
) |
|
|
|
system_prompt = gr.Textbox( |
|
label="System Prompt", |
|
value=default_system_prompt, |
|
lines=10 |
|
) |
|
|
|
msg = gr.Textbox( |
|
label="Type your message here...", |
|
placeholder="Enter your message..." |
|
) |
|
submit = gr.Button("Submit") |
|
clear = gr.Button("Clear Chat") |
|
|
|
output = gr.Textbox( |
|
label="Response", |
|
lines=20, |
|
interactive=False |
|
) |
|
|
|
|
|
chat_history = [] |
|
|
|
def handle_submit(message, history, model, system_prompt, thinking_budget, api_key): |
|
response = process_chat(message, history, model, system_prompt, thinking_budget, api_key) |
|
return response |
|
|
|
def handle_clear(): |
|
return "" |
|
|
|
submit.click( |
|
handle_submit, |
|
inputs=[msg, gr.State(chat_history), model, system_prompt, thinking_budget, api_key], |
|
outputs=output |
|
) |
|
|
|
clear.click( |
|
lambda: "", |
|
inputs=None, |
|
outputs=output |
|
) |
|
|
|
demo.launch() |