from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from datetime import datetime import gradio as gr # import spaces import torch DEVICE = 'cpu' # 'cuda' if torch.cuda.is_available() else 'cpu' DEBUG_UI = False LANGS = { 'English': 'eng_Latn', 'Interslavic': 'isv_Latn', # 'Интерславик': 'isv_Cyrl', 'Russian': 'rus_Cyrl', 'Belarusian': 'bel_Cyrl', 'Ukrainian': 'ukr_Cyrl', 'Polish': 'pol_Latn', 'Silesian': 'szl_Latn', 'Czech': 'ces_Latn', 'Slovak': 'slk_Latn', 'Slovenian': 'slv_Latn', 'Croatian': 'hrv_Latn', 'Bosnian': 'bos_Latn', 'Serbian': 'srp_Cyrl', 'Macedonian': 'mkd_Cyrl', 'Bulgarian': 'bul_Cyrl', 'Esperanto': 'epo_Latn', 'German': 'deu_Latn', 'French': 'fra_Latn', 'Spanish': 'spa_Latn', } if DEBUG_UI: def translate(text, src_lang, tgt_lang): return text else: model_name = 'salavat/nllb-200-distilled-600M-finetuned-isv_v2' model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(DEVICE) tokenizer = AutoTokenizer.from_pretrained(model_name) lang2id = tokenizer.added_tokens_encoder # @spaces.GPU def translate(text, from_, to_): start = datetime.now() # empty line hallucinations fix lines = [f'{line} ' for line in text.split('\n')] if text else '' inputs = tokenizer(lines, return_tensors="pt", padding=True).to(DEVICE) inputs['input_ids'][:, 0] = lang2id[LANGS[from_]] translated_tokens = model.generate(**inputs, max_length=400, forced_bos_token_id=lang2id[LANGS[to_]]) result = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True) output = '\n'.join(result) end = datetime.now() input_shape = tuple(inputs.input_ids.shape) output_shape = tuple(translated_tokens.shape) print(f'[{end}] {DEVICE}_time - {end-start}; input {input_shape} / output {output_shape};') return output with gr.Blocks() as demo: gr.Markdown('