Spaces:
Sleeping
Sleeping
File size: 23,639 Bytes
771c061 6eb3e40 8a63634 6eb3e40 771c061 6eb3e40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 |
import streamlit as st
import sqlite3
import pandas as pd
import gdown
import os
from sentence_transformers import SentenceTransformer, CrossEncoder
import faiss
import numpy as np
from wordcloud import WordCloud
import altair as alt
import textwrap
import plotly.express as px
from sklearn.cluster import KMeans
# Path Constants
MAJOR_DB_PATH = "./docs/majors.db"
MAP_DB_PATH = "./docs/map.db"
JOBS_DB_PATH = "./docs/jobs.db"
FAISS_INDEX_PATH = "./docs/jobs_embeddings.faiss"
# Secrets
JOBS_GDRIVE_URL = os.environ.get("JOB_URL")
FAISS_GDRIVE_URL = os.environ.get("FAISS_URL")
# Model Constants
EMBEDDINGS_MODEL = "mixedbread-ai/mxbai-embed-xsmall-v1"
RERANK_MODEL = "mixedbread-ai/mxbai-rerank-xsmall-v1"
dimensions=384
# Search Constants
MAX_JOB_POSTINGS_FETCH = 100
SEMANTIC_SCORE_SCALE = 100.0
RELEVANCY_THRESHOLD = 0.1
# Ensure job DB exists locally
def download_jobs_db():
if not os.path.exists(JOBS_DB_PATH):
st.info("Downloading job postings database...")
gdown.download(JOBS_GDRIVE_URL, JOBS_DB_PATH, quiet=False)
# Ensure FAISS index exists locally
def download_faiss_index():
if not os.path.exists(FAISS_INDEX_PATH):
st.info("Downloading FAISS index...")
gdown.download(FAISS_GDRIVE_URL, FAISS_INDEX_PATH, quiet=False)
# Load hierarchical structure from majors.db
@st.cache_data
def load_major_hierarchy():
conn = sqlite3.connect(MAJOR_DB_PATH)
df = pd.read_sql(
"SELECT DISTINCT School, Department, [Major Name] AS Major, [Degree Level] AS DegreeLevel FROM majors;",
conn,
)
conn.close()
return df
# Load embedding model
@st.cache_resource
def load_embedding_model():
return SentenceTransformer(EMBEDDINGS_MODEL, truncate_dim=dimensions)
# Load FAISS index and job ID map
@st.cache_resource
def load_faiss_index():
download_faiss_index()
index = faiss.read_index(FAISS_INDEX_PATH)
return index
# Generate embedding for a major
@st.cache_data
def get_major_embedding(major_display: str):
"""
major_display is of the form "Major Name (DegreeLevel)".
We parse out both pieces, lookup description, and encode all three.
"""
model = load_embedding_model()
# 1) parse the display into name & degree
if "(" in major_display and major_display.endswith(")"):
name, degree = major_display.rsplit("(", 1)
name = name.strip()
degree = degree[:-1] # drop trailing ")"
else:
name, degree = major_display, ""
# 2) fetch the rich description from majors.db
conn = sqlite3.connect(MAJOR_DB_PATH)
row = conn.execute(
"SELECT description FROM majors WHERE [Major Name]=? AND [Degree Level]=?",
(name, degree)
).fetchone()
conn.close()
desc = row[0] if row and row[0] else ""
# 3) build the full prompt
full_text = f"{name} ({degree}). {desc}"
# 4) embed
emb = model.encode(full_text, prompt_name="query", convert_to_numpy=True)
emb = np.array(emb, dtype='float32')
faiss.normalize_L2(emb.reshape(1, -1))
return emb
@st.cache_data
def get_major_query_text(major_display: str) -> str:
# parse out name & degree exactly like get_major_embedding
if "(" in major_display and major_display.endswith(")"):
name, degree = major_display.rsplit("(", 1)
name = name.strip()
degree = degree[:-1]
else:
name, degree = major_display, ""
# fetch the same description
conn = sqlite3.connect(MAJOR_DB_PATH)
row = conn.execute(
"SELECT description FROM majors WHERE [Major Name]=? AND [Degree Level]=?",
(name, degree)
).fetchone()
conn.close()
desc = row[0] if row and row[0] else ""
# rebuild the exact query text
return f"{name} ({degree}). {desc}"
# Perform semantic search using FAISS
@st.cache_data
def perform_semantic_search(major_embedding, _faiss_index, k_results):
D, I = _faiss_index.search(major_embedding.reshape(1, -1), k_results)
results = []
for idx64, score in zip(I[0], D[0]):
if idx64 == -1:
continue
job_id = int(idx64) # this *is* your job_id
results.append({'job_id': job_id, 'semantic_score': float(score)})
return pd.DataFrame(results)
# Fetch jobs by ID and calculate relevancy in Python
def get_jobs_with_semantic_scores(job_ids_with_scores):
if job_ids_with_scores.empty:
return pd.DataFrame()
job_ids = job_ids_with_scores['job_id'].tolist()
placeholders = ','.join(['?' for _ in job_ids])
conn = sqlite3.connect(JOBS_DB_PATH)
sql = f"SELECT * FROM job_postings WHERE job_id IN ({placeholders});"
jobs_df = pd.read_sql(sql, conn, params=job_ids)
conn.close()
# Merge with semantic scores
merged_df = pd.merge(jobs_df, job_ids_with_scores, left_on='job_id', right_on='job_id', how='inner')
# Calculate relevancy score
merged_df['relevancy_score'] = merged_df['semantic_score'] * SEMANTIC_SCORE_SCALE
# Calculate the 25th percentile of relevancy scores
# Only calculate if there are enough scores to make sense, otherwise use a default low threshold
if not merged_df.empty and len(merged_df) >= 4: # Ensure at least 4 elements for 25th percentile
percentile_threshold = np.percentile(merged_df['relevancy_score'], 25)
else:
percentile_threshold = 0.0 # Fallback to a very low threshold if not enough data
# Filter by the dynamic percentile threshold
filtered_df = merged_df[merged_df['relevancy_score'] >= percentile_threshold]
# Sort by relevancy score and limit to MAX_JOB_POSTINGS_FETCH
sorted_df = filtered_df.sort_values(by='relevancy_score', ascending=False)
return sorted_df.head(MAX_JOB_POSTINGS_FETCH)
# Run query on jobs.db
def query_jobs(sql_query, params):
conn = sqlite3.connect(JOBS_DB_PATH)
df = pd.read_sql(sql_query, conn, params=params)
conn.close()
return df
# Streamlit UI
st.set_page_config(
page_title="Major-to-Job Explorer",
layout="centered",
initial_sidebar_state="expanded"
)
st.title("🎓 Major-to-Job Postings Explorer")
# Download job DB and FAISS index if needed
download_jobs_db()
download_faiss_index()
# Load hierarchy
hierarchy_df = load_major_hierarchy()
# Step 1: Select School
schools = sorted(hierarchy_df["School"].unique())
selected_school = st.selectbox("Select a School:", schools)
if selected_school:
departments = sorted(hierarchy_df[hierarchy_df["School"] == selected_school]["Department"].unique())
selected_department = st.selectbox("Select a Department:", departments)
if selected_department:
majors_df = hierarchy_df[
(hierarchy_df["School"] == selected_school) &
(hierarchy_df["Department"] == selected_department)
].copy()
# Create a display string for the selectbox
majors_df["Display"] = majors_df["Major"] + " (" + majors_df["DegreeLevel"] + ")"
# Create a mapping from display string to actual major name
major_display_to_name = dict(zip(majors_df["Display"], majors_df["Major"]))
# Sort the display names
display_majors = sorted(majors_df["Display"].unique())
selected_major_display = st.selectbox("Select a Major:", display_majors)
# Get the actual major name from the display name
selected_major = major_display_to_name.get(selected_major_display)
search_button = st.button("Search Jobs")
if search_button and selected_major:
# Reset pagination when a new search is initiated
st.session_state.current_page = 0
st.session_state.last_selected_major = selected_major
with st.spinner("Loading semantic data..."):
faiss_index = load_faiss_index()
with st.spinner(f"Generating embedding for {selected_major}..."):
# use the “Major Name (DegreeLevel)” that the user selected
major_embedding = get_major_embedding(selected_major_display)
with st.spinner("Performing semantic search..."):
# Fetch more results initially to allow for percentile filtering
semantic_results = perform_semantic_search(major_embedding, faiss_index, MAX_JOB_POSTINGS_FETCH * 4)
st.session_state.search_results = get_jobs_with_semantic_scores(semantic_results)
if not st.session_state.search_results.empty:
st.success(f"Search complete! Found {len(st.session_state.search_results)} relevant job postings.")
else:
st.warning("No relevant job postings found for this major.")
st.session_state.search_results = pd.DataFrame()
# Display results if they exist in session state
if 'search_results' in st.session_state and not st.session_state.search_results.empty:
results = st.session_state.search_results
current_major_display = st.session_state.get('last_selected_major', 'Selected Major')
# ── Cross‐Encoder Rerank using major description ──
cross_encoder = CrossEncoder(RERANK_MODEL)
# 1) Grab the exact same query text we used for FAISS
query_text = get_major_query_text(selected_major_display)
# 2) Build (query_text, job_desc) pairs
pairs = [(query_text, jd) for jd in results["description"].tolist()]
# 3) Cross-encode as before
cross_scores = cross_encoder.predict(pairs)
results["cross_score"] = cross_scores
results = results.sort_values("cross_score", ascending=False).reset_index(drop=True)
# 4) (Optional) Truncate to top‐N for display
TOP_N = st.sidebar.slider("Results to show", 5, 100, 50)
results = results.head(TOP_N).copy()
# ── Dynamic Role Clustering ──
# 1) Re-encode titles into embeddings
model = load_embedding_model()
titles = results["title"].tolist()
embs = model.encode(titles, convert_to_numpy=True) # ← this bit was missing
# 2) Cluster into up to 8 roles
n_roles = min(8, len(titles))
kmeans = KMeans(n_clusters=n_roles, random_state=0).fit(embs)
results["cluster_id"] = kmeans.labels_
# 3) Build human-readable names
centroids = kmeans.cluster_centers_
role_names = []
for cid, center in enumerate(centroids):
idxs = np.where(results["cluster_id"] == cid)[0] # positional indices
cluster_embs = embs[idxs]
# get the positional index of the closest embedding
winner_pos = idxs[np.argmin(np.linalg.norm(cluster_embs - center, axis=1))]
# use iloc to fetch by positional index
role_names.append(results.iloc[winner_pos]["title"])
# 4) Map into new column
cluster_to_role = {i: name for i, name in enumerate(role_names)}
results["role_name"] = results["cluster_id"].map(cluster_to_role)
# ----------Beginning of "Visualization" section-----------------
viz = st.sidebar.selectbox(
"Choose a visualization",
["None", "Word Cloud", "Top-10 Bar Chart", "Treemap"],
index = 2
)
if viz == "None":
st.info("No visualization selected. Use the sidebar to choose one.")
else:
st.header("🔍 At-a-Glance: Top Job Roles")
if viz == "Word Cloud":
# Sum relevancy by role
role_weights = (
results
.groupby("role_name")["relevancy_score"]
.sum()
.to_dict()
)
# Generate cloud
wc = WordCloud(
width=800, height=400,
background_color="white",
max_words=50
).generate_from_frequencies({r: int(s*100) for r, s in role_weights.items()})
st.subheader("Role-Level Word Cloud")
st.image(wc.to_array(), use_container_width=True)
elif viz == "Top-10 Bar Chart":
# Let user pick metric
metric = st.sidebar.radio("Rank by:", ["Count", "Avg Relevancy"])
field = "count" if metric=="Count" else "avg_rel"
# Aggregate on role_name
df_role = (
results
.groupby("role_name")
.agg(count=("role_name","size"), avg_rel=("relevancy_score","mean"))
.reset_index()
.sort_values(field, ascending=False)
.head(10)
)
chart = (
alt.Chart(df_role)
.mark_bar()
.encode(
x=alt.X(f"{field}:Q", title=metric),
y=alt.Y("role_name:N", sort='-x', title="Role"),
tooltip=["role_name","count","avg_rel"]
)
.properties(title=f"Top-10 Roles by {metric}", height=400)
)
st.altair_chart(chart, use_container_width=True)
with st.expander("View Data Table"):
st.table(
df_role.rename(columns={
"role_name":"Role","count":"Count","avg_rel":"Avg. Relevancy"
})
)
elif viz == "Treemap":
# 1) Prepare a two-level DataFrame
df_tree = (
results
.groupby(["role_name", "title"])
.agg(
count=("title", "size"),
avg_rel=("relevancy_score", "mean")
)
.reset_index()
)
# 2) Prune children: keep top 5 titles per role, aggregate the rest
def prune_children(df, top_n=5):
pieces = []
for role, grp in df.groupby("role_name"):
# pick the top N by count
top = grp.nlargest(top_n, "count")
rest = grp.drop(top.index)
pieces.append(top)
if not rest.empty:
pieces.append(pd.DataFrame({
"role_name": [role],
"title": ["Other Titles"],
"count": [rest["count"].sum()],
"avg_rel": [rest["avg_rel"].mean()]
}))
return pd.concat(pieces, ignore_index=True)
# apply pruning
df_tree = prune_children(df_tree, top_n=5)
# 3) Build a treemap showing both levels at once
fig = px.treemap(
df_tree,
path=["role_name", "title"], # level-0=role_name, level-1=title
values="count",
color="avg_rel",
color_continuous_scale="Viridis",
hover_data=["count", "avg_rel"],
title="Jobs Treemap (Roles → Titles)",
maxdepth=2 # always draw both levels
)
# 4) Improve padding & fonts for clarity
fig.update_traces(
tiling=dict(pad=3), # inner padding
outsidetextfont=dict(size=18, color="white"), # role labels
insidetextfont=dict(size=12, color="white"), # title labels
textinfo="label+value" # show name + count on each rectangle
)
# 5) Add breathing room and a clear colorbar title
fig.update_layout(
margin=dict(t=50, l=25, r=25, b=25),
coloraxis_colorbar=dict(title="Avg. Relevancy")
)
st.plotly_chart(fig, use_container_width=True)
# -----------------End of "Visualization" section-----------------
st.subheader(f"Job Postings for: {current_major_display}")
st.write("Results are ranked by semantic relevancy.")
# Pagination setup
JOBS_PER_PAGE = 10
if 'current_page' not in st.session_state:
st.session_state.current_page = 0
total_jobs = len(results)
total_pages = (total_jobs + JOBS_PER_PAGE - 1) // JOBS_PER_PAGE
start_index = st.session_state.current_page * JOBS_PER_PAGE
end_index = min(start_index + JOBS_PER_PAGE, total_jobs)
results_page = results.iloc[start_index:end_index]
# Display navigation buttons
nav_cols = st.columns([1, 1, 1], vertical_alignment='center', gap='large', border=True)
with nav_cols[0]:
if st.session_state.current_page > 0:
if st.button("Previous"):
st.session_state.current_page -= 1
st.rerun()
with nav_cols[0]:
if st.session_state.current_page > 0:
if st.button("First Page"):
st.session_state.current_page = 0
st.rerun()
with nav_cols[1]:
# Page number selector
page_options = [i + 1 for i in range(total_pages)]
selected_page_display = st.selectbox(
"Go to Page:",
options=page_options,
index=st.session_state.current_page,
key="page_selector"
)
# Update current_page if selection changes
if selected_page_display - 1 != st.session_state.current_page:
st.session_state.current_page = selected_page_display - 1
st.rerun()
with nav_cols[2]:
if st.session_state.current_page < total_pages - 1:
if st.button("Next"):
st.session_state.current_page += 1
st.rerun()
with nav_cols[2]:
if st.session_state.current_page < total_pages - 1:
if st.button("Last Page"):
st.session_state.current_page = total_pages - 1
st.rerun()
st.write(f"Displaying jobs {start_index + 1}-{end_index} of {total_jobs}")
if results_page.empty:
st.info("No job postings found for this page.")
else:
for index, row in results_page.iterrows():
st.subheader(f"{row['title']} at {row['company_name']}")
st.write(f"**Location:** {row['location']} | **Experience Level:** {row['formatted_experience_level']} | **Relevancy Score:** {row['relevancy_score']:.2f}")
with st.expander("View Details"):
st.write(f"**Description:**")
st.markdown(row['description'])
if pd.notna(row['skills_desc']) and row['skills_desc']:
st.write(f"**Skills:**")
st.markdown(row['skills_desc'])
st.write(f"**Listed Time:** {row['listed_time']}")
st.write(f"**Work Type:** {row['formatted_work_type']}")
st.write(f"**Remote Allowed:** {'Yes' if row['remote_allowed'] else 'No'}")
salary_info = []
if pd.notna(row['min_salary']) and pd.notna(row['max_salary']):
salary_info.append(f"{row['currency']} {row['min_salary']:.2f} - {row['max_salary']:.2f} {row['pay_period']}")
elif pd.notna(row['normalized_salary']):
salary_info.append(f"Normalized Salary: {row['currency']} {row['normalized_salary']:.2f}")
if salary_info:
st.write(f"**Salary:** {', '.join(salary_info)}")
else:
st.write("**Salary:** Not specified")
if pd.notna(row['job_posting_url']) and row['job_posting_url']:
st.markdown(f"**Job Posting URL:** [Link]({row['job_posting_url']})")
if pd.notna(row['application_url']) and row['application_url']:
st.markdown(f"**Application URL:** [Link]({row['application_url']})")
st.write(f"**Views:** {row['views']} | **Applies:** {row['applies']}")
st.markdown("---")
nav_cols_top = st.columns([1, 1, 1], vertical_alignment='center', gap='large', border=True)
with nav_cols_top[0]:
if st.session_state.current_page > 0:
if st.button("Previous", key="prev_top"):
st.session_state.current_page -= 1
st.rerun()
with nav_cols_top[0]:
if st.session_state.current_page > 0:
if st.button("First Page", key="first_top"):
st.session_state.current_page = 0
st.rerun()
with nav_cols_top[1]:
page_options = [i + 1 for i in range(total_pages)]
selected_page_display_top = st.selectbox(
"Go to Page:",
options=page_options,
index=st.session_state.current_page,
key="page_selector_top"
)
if selected_page_display_top - 1 != st.session_state.current_page:
st.session_state.current_page = selected_page_display_top - 1
st.rerun()
with nav_cols_top[2]:
if st.session_state.current_page < total_pages - 1:
if st.button("Next", key="next_top"):
st.session_state.current_page += 1
st.rerun()
with nav_cols_top[2]:
if st.session_state.current_page < total_pages - 1:
if st.button("Last Page", key="last_top"):
st.session_state.current_page = total_pages - 1
st.rerun()
st.write(f"Displaying jobs {start_index + 1}-{end_index} of {total_jobs}")
if not results.empty:
st.download_button(
"Download Results as CSV",
data=results.to_csv(index=False),
file_name="job_results.csv",
mime="text/csv"
) |