Spaces:
Runtime error
Runtime error
| # Copyright 2024 Zhejiang University Team and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import math | |
| from typing import List, Optional, Tuple, Union | |
| import numpy as np | |
| import torch | |
| from ..configuration_utils import ConfigMixin, register_to_config | |
| from .scheduling_utils import SchedulerMixin, SchedulerOutput | |
| class IPNDMScheduler(SchedulerMixin, ConfigMixin): | |
| """ | |
| A fourth-order Improved Pseudo Linear Multistep scheduler. | |
| This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic | |
| methods the library implements for all schedulers such as loading and saving. | |
| Args: | |
| num_train_timesteps (`int`, defaults to 1000): | |
| The number of diffusion steps to train the model. | |
| trained_betas (`np.ndarray`, *optional*): | |
| Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`. | |
| """ | |
| order = 1 | |
| def __init__( | |
| self, num_train_timesteps: int = 1000, trained_betas: Optional[Union[np.ndarray, List[float]]] = None | |
| ): | |
| # set `betas`, `alphas`, `timesteps` | |
| self.set_timesteps(num_train_timesteps) | |
| # standard deviation of the initial noise distribution | |
| self.init_noise_sigma = 1.0 | |
| # For now we only support F-PNDM, i.e. the runge-kutta method | |
| # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf | |
| # mainly at formula (9), (12), (13) and the Algorithm 2. | |
| self.pndm_order = 4 | |
| # running values | |
| self.ets = [] | |
| self._step_index = None | |
| self._begin_index = None | |
| def step_index(self): | |
| """ | |
| The index counter for current timestep. It will increae 1 after each scheduler step. | |
| """ | |
| return self._step_index | |
| def begin_index(self): | |
| """ | |
| The index for the first timestep. It should be set from pipeline with `set_begin_index` method. | |
| """ | |
| return self._begin_index | |
| # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index | |
| def set_begin_index(self, begin_index: int = 0): | |
| """ | |
| Sets the begin index for the scheduler. This function should be run from pipeline before the inference. | |
| Args: | |
| begin_index (`int`): | |
| The begin index for the scheduler. | |
| """ | |
| self._begin_index = begin_index | |
| def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): | |
| """ | |
| Sets the discrete timesteps used for the diffusion chain (to be run before inference). | |
| Args: | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| """ | |
| self.num_inference_steps = num_inference_steps | |
| steps = torch.linspace(1, 0, num_inference_steps + 1)[:-1] | |
| steps = torch.cat([steps, torch.tensor([0.0])]) | |
| if self.config.trained_betas is not None: | |
| self.betas = torch.tensor(self.config.trained_betas, dtype=torch.float32) | |
| else: | |
| self.betas = torch.sin(steps * math.pi / 2) ** 2 | |
| self.alphas = (1.0 - self.betas**2) ** 0.5 | |
| timesteps = (torch.atan2(self.betas, self.alphas) / math.pi * 2)[:-1] | |
| self.timesteps = timesteps.to(device) | |
| self.ets = [] | |
| self._step_index = None | |
| self._begin_index = None | |
| # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep | |
| def index_for_timestep(self, timestep, schedule_timesteps=None): | |
| if schedule_timesteps is None: | |
| schedule_timesteps = self.timesteps | |
| indices = (schedule_timesteps == timestep).nonzero() | |
| # The sigma index that is taken for the **very** first `step` | |
| # is always the second index (or the last index if there is only 1) | |
| # This way we can ensure we don't accidentally skip a sigma in | |
| # case we start in the middle of the denoising schedule (e.g. for image-to-image) | |
| pos = 1 if len(indices) > 1 else 0 | |
| return indices[pos].item() | |
| # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index | |
| def _init_step_index(self, timestep): | |
| if self.begin_index is None: | |
| if isinstance(timestep, torch.Tensor): | |
| timestep = timestep.to(self.timesteps.device) | |
| self._step_index = self.index_for_timestep(timestep) | |
| else: | |
| self._step_index = self._begin_index | |
| def step( | |
| self, | |
| model_output: torch.FloatTensor, | |
| timestep: int, | |
| sample: torch.FloatTensor, | |
| return_dict: bool = True, | |
| ) -> Union[SchedulerOutput, Tuple]: | |
| """ | |
| Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with | |
| the linear multistep method. It performs one forward pass multiple times to approximate the solution. | |
| Args: | |
| model_output (`torch.FloatTensor`): | |
| The direct output from learned diffusion model. | |
| timestep (`int`): | |
| The current discrete timestep in the diffusion chain. | |
| sample (`torch.FloatTensor`): | |
| A current instance of a sample created by the diffusion process. | |
| return_dict (`bool`): | |
| Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or tuple. | |
| Returns: | |
| [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`: | |
| If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a | |
| tuple is returned where the first element is the sample tensor. | |
| """ | |
| if self.num_inference_steps is None: | |
| raise ValueError( | |
| "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" | |
| ) | |
| if self.step_index is None: | |
| self._init_step_index(timestep) | |
| timestep_index = self.step_index | |
| prev_timestep_index = self.step_index + 1 | |
| ets = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] | |
| self.ets.append(ets) | |
| if len(self.ets) == 1: | |
| ets = self.ets[-1] | |
| elif len(self.ets) == 2: | |
| ets = (3 * self.ets[-1] - self.ets[-2]) / 2 | |
| elif len(self.ets) == 3: | |
| ets = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 | |
| else: | |
| ets = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) | |
| prev_sample = self._get_prev_sample(sample, timestep_index, prev_timestep_index, ets) | |
| # upon completion increase step index by one | |
| self._step_index += 1 | |
| if not return_dict: | |
| return (prev_sample,) | |
| return SchedulerOutput(prev_sample=prev_sample) | |
| def scale_model_input(self, sample: torch.FloatTensor, *args, **kwargs) -> torch.FloatTensor: | |
| """ | |
| Ensures interchangeability with schedulers that need to scale the denoising model input depending on the | |
| current timestep. | |
| Args: | |
| sample (`torch.FloatTensor`): | |
| The input sample. | |
| Returns: | |
| `torch.FloatTensor`: | |
| A scaled input sample. | |
| """ | |
| return sample | |
| def _get_prev_sample(self, sample, timestep_index, prev_timestep_index, ets): | |
| alpha = self.alphas[timestep_index] | |
| sigma = self.betas[timestep_index] | |
| next_alpha = self.alphas[prev_timestep_index] | |
| next_sigma = self.betas[prev_timestep_index] | |
| pred = (sample - sigma * ets) / max(alpha, 1e-8) | |
| prev_sample = next_alpha * pred + ets * next_sigma | |
| return prev_sample | |
| def __len__(self): | |
| return self.config.num_train_timesteps | |