Spaces:
Runtime error
Runtime error
import spaces | |
import os | |
import json | |
import time | |
import torch | |
from PIL import Image | |
from tqdm import tqdm | |
import gradio as gr | |
from safetensors.torch import save_file | |
from src.pipeline import FluxPipeline | |
from src.transformer_flux import FluxTransformer2DModel | |
from src.lora_helper import set_single_lora, set_multi_lora, unset_lora | |
# Initialize the image processor | |
base_path = "black-forest-labs/FLUX.1-dev" | |
lora_base_path = "./models" | |
pipe = FluxPipeline.from_pretrained(base_path, torch_dtype=torch.bfloat16) | |
transformer = FluxTransformer2DModel.from_pretrained(base_path, subfolder="transformer", torch_dtype=torch.bfloat16) | |
pipe.transformer = transformer | |
pipe.to("cuda") | |
def clear_cache(transformer): | |
for name, attn_processor in transformer.attn_processors.items(): | |
attn_processor.bank_kv.clear() | |
# Define the Gradio interface | |
def single_condition_generate_image(prompt, spatial_img, height, width, seed, control_type): | |
# Set the control type | |
if control_type == "Ghibli": | |
lora_path = os.path.join(lora_base_path, "Ghibli.safetensors") | |
set_single_lora(pipe.transformer, lora_path, lora_weights=[1], cond_size=512) | |
# Process the image | |
spatial_imgs = [spatial_img] if spatial_img else [] | |
image = pipe( | |
prompt, | |
height=int(height), | |
width=int(width), | |
guidance_scale=3.5, | |
num_inference_steps=25, | |
max_sequence_length=512, | |
generator=torch.Generator("cpu").manual_seed(seed), | |
subject_images=[], | |
spatial_images=spatial_imgs, | |
cond_size=512, | |
).images[0] | |
clear_cache(pipe.transformer) | |
return image | |
# Define the Gradio interface components | |
control_types = ["Ghibli"] | |
# Example data | |
single_examples = [ | |
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/00.png"), 680, 1024, 5, "Ghibli"], | |
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/02.png"), 560, 1024, 42, "Ghibli"], | |
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/03.png"), 568, 1024, 1, "Ghibli"], | |
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/04.png"), 768, 672, 1, "Ghibli"], | |
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/06.png"), 896, 1024, 1, "Ghibli"], | |
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/07.png"), 528, 800, 1, "Ghibli"], | |
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/08.png"), 696, 1024, 1, "Ghibli"], | |
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/09.png"), 896, 1024, 1, "Ghibli"], | |
] | |
# Create the Gradio Blocks interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Ghibli Studio Control Image Generation with EasyControl") | |
gr.Markdown("The model is trained on **only 100 real Asian faces** paired with **GPT-4o-generated Ghibli-style counterparts**, and it preserves facial features while applying the iconic anime aesthetic.") | |
gr.Markdown("Generate images using EasyControl with Ghibli control LoRAs.οΌDue to hardware constraints, only low-resolution images can be generated. For high-resolution (1024+), please set up your own environment.οΌ") | |
gr.Markdown("**[Attention!!]**οΌThe recommended prompts for using Ghibli Control LoRA should include the trigger words: `Ghibli Studio style, Charming hand-drawn anime-style illustration`") | |
gr.Markdown("ππIf you like this demo, please give us a star (github: [EasyControl](https://github.com/Xiaojiu-z/EasyControl))") | |
with gr.Tab("Ghibli Condition Generation"): | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox(label="Prompt", value="Ghibli Studio style, Charming hand-drawn anime-style illustration") | |
spatial_img = gr.Image(label="Ghibli Image", type="pil") # δΈδΌ εΎεζδ»Ά | |
height = gr.Slider(minimum=256, maximum=1024, step=64, label="Height", value=768) | |
width = gr.Slider(minimum=256, maximum=1024, step=64, label="Width", value=768) | |
seed = gr.Number(label="Seed", value=42) | |
control_type = gr.Dropdown(choices=control_types, label="Control Type") | |
single_generate_btn = gr.Button("Generate Image") | |
with gr.Column(): | |
single_output_image = gr.Image(label="Generated Image") | |
# Add examples for Single Condition Generation | |
gr.Examples( | |
examples=single_examples, | |
inputs=[prompt, spatial_img, height, width, seed, control_type], | |
outputs=single_output_image, | |
fn=single_condition_generate_image, | |
cache_examples=False, # ηΌεη€ΊδΎη»ζδ»₯ε εΏ«ε θ½½ιεΊ¦ | |
label="Single Condition Examples" | |
) | |
# Link the buttons to the functions | |
single_generate_btn.click( | |
single_condition_generate_image, | |
inputs=[prompt, spatial_img, height, width, seed, control_type], | |
outputs=single_output_image | |
) | |
# Launch the Gradio app | |
demo.queue().launch() |