jamesliu1217's picture
Update app.py
f1df3c1 verified
import spaces
import os
import json
import time
import torch
from PIL import Image
from tqdm import tqdm
import gradio as gr
from safetensors.torch import save_file
from src.pipeline import FluxPipeline
from src.transformer_flux import FluxTransformer2DModel
from src.lora_helper import set_single_lora, set_multi_lora, unset_lora
# Initialize the image processor
base_path = "black-forest-labs/FLUX.1-dev"
lora_base_path = "./models"
pipe = FluxPipeline.from_pretrained(base_path, torch_dtype=torch.bfloat16)
transformer = FluxTransformer2DModel.from_pretrained(base_path, subfolder="transformer", torch_dtype=torch.bfloat16)
pipe.transformer = transformer
pipe.to("cuda")
def clear_cache(transformer):
for name, attn_processor in transformer.attn_processors.items():
attn_processor.bank_kv.clear()
# Define the Gradio interface
@spaces.GPU()
def single_condition_generate_image(prompt, spatial_img, height, width, seed, control_type):
# Set the control type
if control_type == "Ghibli":
lora_path = os.path.join(lora_base_path, "Ghibli.safetensors")
set_single_lora(pipe.transformer, lora_path, lora_weights=[1], cond_size=512)
# Process the image
spatial_imgs = [spatial_img] if spatial_img else []
image = pipe(
prompt,
height=int(height),
width=int(width),
guidance_scale=3.5,
num_inference_steps=25,
max_sequence_length=512,
generator=torch.Generator("cpu").manual_seed(seed),
subject_images=[],
spatial_images=spatial_imgs,
cond_size=512,
).images[0]
clear_cache(pipe.transformer)
return image
# Define the Gradio interface components
control_types = ["Ghibli"]
# Example data
single_examples = [
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/00.png"), 680, 1024, 5, "Ghibli"],
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/02.png"), 560, 1024, 42, "Ghibli"],
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/03.png"), 568, 1024, 1, "Ghibli"],
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/04.png"), 768, 672, 1, "Ghibli"],
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/06.png"), 896, 1024, 1, "Ghibli"],
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/07.png"), 528, 800, 1, "Ghibli"],
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/08.png"), 696, 1024, 1, "Ghibli"],
["Ghibli Studio style, Charming hand-drawn anime-style illustration", Image.open("./test_imgs/09.png"), 896, 1024, 1, "Ghibli"],
]
# Create the Gradio Blocks interface
with gr.Blocks() as demo:
gr.Markdown("# Ghibli Studio Control Image Generation with EasyControl")
gr.Markdown("The model is trained on **only 100 real Asian faces** paired with **GPT-4o-generated Ghibli-style counterparts**, and it preserves facial features while applying the iconic anime aesthetic.")
gr.Markdown("Generate images using EasyControl with Ghibli control LoRAs.(Due to hardware constraints, only low-resolution images can be generated. For high-resolution (1024+), please set up your own environment.οΌ‰")
gr.Markdown("**[Attention!!]**:The recommended prompts for using Ghibli Control LoRA should include the trigger words: `Ghibli Studio style, Charming hand-drawn anime-style illustration`")
gr.Markdown("😊😊If you like this demo, please give us a star (github: [EasyControl](https://github.com/Xiaojiu-z/EasyControl))")
with gr.Tab("Ghibli Condition Generation"):
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", value="Ghibli Studio style, Charming hand-drawn anime-style illustration")
spatial_img = gr.Image(label="Ghibli Image", type="pil") # δΈŠδΌ ε›Ύεƒζ–‡δ»Ά
height = gr.Slider(minimum=256, maximum=1024, step=64, label="Height", value=768)
width = gr.Slider(minimum=256, maximum=1024, step=64, label="Width", value=768)
seed = gr.Number(label="Seed", value=42)
control_type = gr.Dropdown(choices=control_types, label="Control Type")
single_generate_btn = gr.Button("Generate Image")
with gr.Column():
single_output_image = gr.Image(label="Generated Image")
# Add examples for Single Condition Generation
gr.Examples(
examples=single_examples,
inputs=[prompt, spatial_img, height, width, seed, control_type],
outputs=single_output_image,
fn=single_condition_generate_image,
cache_examples=False, # ηΌ“ε­˜η€ΊδΎ‹η»“ζžœδ»₯εŠ εΏ«εŠ θ½½ι€ŸεΊ¦
label="Single Condition Examples"
)
# Link the buttons to the functions
single_generate_btn.click(
single_condition_generate_image,
inputs=[prompt, spatial_img, height, width, seed, control_type],
outputs=single_output_image
)
# Launch the Gradio app
demo.queue().launch()