Spaces:
Runtime error
Runtime error
| from transformers import AutoProcessor, AutoModelForCausalLM | |
| import torch | |
| import gradio as gr | |
| # Ensure you use the latest version of transformers! | |
| # For example, in your requirements.txt, you might include: | |
| # transformers>=4.31.0 | |
| # Load the processor and model while trusting remote code. | |
| processor = AutoProcessor.from_pretrained( | |
| "lmms-lab/LLaVA-Video-7B-Qwen2", | |
| trust_remote_code=True | |
| ) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| "lmms-lab/LLaVA-Video-7B-Qwen2", | |
| trust_remote_code=True | |
| ) | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model.to(device) | |
| def analyze_video(video_path): | |
| prompt = "Analyze this video of a concert and determine the moment when the crowd is most engaged." | |
| # The processor is expected to handle both text and video input. | |
| inputs = processor(text=prompt, video=video_path, return_tensors="pt") | |
| inputs = {k: v.to(device) for k, v in inputs.items()} | |
| outputs = model.generate(**inputs, max_new_tokens=100) | |
| answer = processor.decode(outputs[0], skip_special_tokens=True) | |
| return answer | |
| iface = gr.Interface( | |
| fn=analyze_video, | |
| inputs=gr.Video(label="Upload Concert/Event Video", type="filepath"), | |
| outputs=gr.Textbox(label="Engagement Analysis"), | |
| title="Crowd Engagement Analyzer", | |
| description="Upload a video of a concert or event and the model will analyze the moment when the crowd is most engaged." | |
| ) | |
| if __name__ == "__main__": | |
| iface.launch() | |