Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,98 +1,115 @@
|
|
1 |
import os
|
2 |
-
import gradio as gr
|
3 |
-
import pdfplumber
|
4 |
import re
|
5 |
-
|
|
|
6 |
from langchain.docstore.document import Document
|
7 |
-
from langchain_community.vectorstores import FAISS
|
8 |
from langchain.embeddings.base import Embeddings
|
9 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
10 |
-
from langchain.chains import RetrievalQA
|
11 |
from langchain.prompts import PromptTemplate
|
|
|
12 |
from langchain_openai import ChatOpenAI
|
13 |
from transformers import pipeline
|
14 |
|
15 |
-
|
16 |
-
#
|
17 |
-
|
|
|
18 |
os.environ["OPENAI_API_BASE"] = "https://openrouter.ai/api/v1"
|
19 |
-
os.environ["OPENAI_API_HEADERS"] =
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
def extract_clean_sections(file_path):
|
28 |
with pdfplumber.open(file_path) as pdf:
|
29 |
-
|
30 |
for page in pdf.pages:
|
31 |
-
text = page.extract_text()
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
|
|
|
37 |
pattern = r"(?<=\n)([A-Z][^\n]{3,50}):"
|
38 |
-
parts = re.split(pattern,
|
39 |
|
40 |
docs = []
|
41 |
for i in range(1, len(parts), 2):
|
42 |
-
title
|
43 |
content = parts[i + 1].strip()
|
44 |
if len(content) > 20:
|
45 |
-
docs.append(
|
|
|
|
|
46 |
return docs
|
47 |
|
48 |
-
#
|
|
|
|
|
49 |
class TfidfEmbedding(Embeddings):
|
50 |
def __init__(self):
|
51 |
-
self.
|
52 |
|
53 |
def fit(self, texts):
|
54 |
-
self.
|
55 |
|
56 |
def embed_documents(self, texts):
|
57 |
-
return self.
|
58 |
|
59 |
def embed_query(self, text):
|
60 |
-
return self.
|
61 |
|
62 |
-
#
|
63 |
-
|
64 |
-
|
|
|
|
|
65 |
Always begin your answer clearly:
|
66 |
- Say "Yes, ..." if the claim is valid
|
67 |
- Say "No, ..." if the claim is not valid
|
68 |
-
- Say "Partially, ..." if it
|
69 |
-
Use the following policy information to
|
70 |
{context}
|
|
|
71 |
Question: {question}
|
|
|
72 |
Answer:
|
73 |
"""
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
-
#
|
77 |
-
|
78 |
-
|
|
|
|
|
79 |
|
80 |
-
docs
|
81 |
-
texts
|
82 |
|
83 |
-
|
84 |
-
|
85 |
|
86 |
-
|
87 |
-
|
88 |
|
89 |
llm = ChatOpenAI(
|
90 |
-
model="tngtech/deepseek-r1t2-chimera:free",
|
91 |
base_url="https://openrouter.ai/api/v1",
|
92 |
api_key=os.getenv("OPENAI_API_KEY"),
|
93 |
default_headers={
|
94 |
"HTTP-Referer": "https://huggingface.co",
|
95 |
-
"X-Title": "PDF
|
96 |
},
|
97 |
temperature=0.0
|
98 |
)
|
@@ -100,53 +117,69 @@ def initialize_policy():
|
|
100 |
qa_chain = RetrievalQA.from_chain_type(
|
101 |
llm=llm,
|
102 |
chain_type="stuff",
|
103 |
-
retriever=
|
104 |
return_source_documents=False,
|
105 |
-
chain_type_kwargs={"prompt":
|
106 |
)
|
107 |
|
108 |
-
#
|
109 |
-
|
110 |
-
|
111 |
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
|
|
115 |
if qa_chain is None:
|
116 |
-
return "
|
|
|
117 |
try:
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
else
|
124 |
-
return qa_chain.run(question)
|
125 |
except Exception as e:
|
126 |
-
return f"Error: {
|
127 |
|
128 |
-
#
|
129 |
-
|
|
|
|
|
130 |
|
131 |
with gr.Blocks() as demo:
|
132 |
-
gr.Markdown("## 📋 SL
|
133 |
|
134 |
-
status_box = gr.Textbox(label="Status",
|
135 |
|
136 |
with gr.Row():
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
140 |
|
141 |
-
answer =
|
142 |
-
ask_btn.click(fn=ask_policy_question, inputs=[question, language], outputs=answer)
|
143 |
|
144 |
-
def
|
145 |
-
global
|
146 |
-
|
147 |
-
|
148 |
-
return
|
149 |
|
150 |
-
demo.load(fn=
|
151 |
|
152 |
-
|
|
|
|
|
|
1 |
import os
|
|
|
|
|
2 |
import re
|
3 |
+
import pdfplumber
|
4 |
+
import gradio as gr
|
5 |
from langchain.docstore.document import Document
|
6 |
+
from langchain_community.vectorstores import FAISS # new import path
|
7 |
from langchain.embeddings.base import Embeddings
|
8 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
|
|
9 |
from langchain.prompts import PromptTemplate
|
10 |
+
from langchain.chains import RetrievalQA
|
11 |
from langchain_openai import ChatOpenAI
|
12 |
from transformers import pipeline
|
13 |
|
14 |
+
# ------------------------------------------------------------------
|
15 |
+
# 🔧 1. OpenRouter configuration (acts as an OpenAI‑compatible host)
|
16 |
+
# ------------------------------------------------------------------
|
17 |
+
os.environ["OPENAI_API_KEY"] = os.getenv("OPENROUTER_API_KEY") # use the same key
|
18 |
os.environ["OPENAI_API_BASE"] = "https://openrouter.ai/api/v1"
|
19 |
+
os.environ["OPENAI_API_HEADERS"] = (
|
20 |
+
'{"HTTP-Referer":"https://huggingface.co", "X-Title":"PDF‑RAG"}'
|
21 |
+
)
|
22 |
+
|
23 |
+
# ------------------------------------------------------------------
|
24 |
+
# 📄 2. PDF → clean sections
|
25 |
+
# ------------------------------------------------------------------
|
26 |
+
def extract_clean_sections(file_path: str):
|
|
|
27 |
with pdfplumber.open(file_path) as pdf:
|
28 |
+
full = ""
|
29 |
for page in pdf.pages:
|
30 |
+
text = page.extract_text() or ""
|
31 |
+
# strip repeating footer/header noise
|
32 |
+
text = re.sub(r"Systems Campus.*?Lahore", "", text, flags=re.I)
|
33 |
+
text = re.sub(r"E-mail:.*?systemsltd\.com", "", text, flags=re.I)
|
34 |
+
full += text + "\n"
|
35 |
|
36 |
+
# split on headings in ALL‑CAPS followed by colon
|
37 |
pattern = r"(?<=\n)([A-Z][^\n]{3,50}):"
|
38 |
+
parts = re.split(pattern, full)
|
39 |
|
40 |
docs = []
|
41 |
for i in range(1, len(parts), 2):
|
42 |
+
title = parts[i].strip()
|
43 |
content = parts[i + 1].strip()
|
44 |
if len(content) > 20:
|
45 |
+
docs.append(
|
46 |
+
Document(page_content=f"{title}:\n{content}", metadata={"section": title})
|
47 |
+
)
|
48 |
return docs
|
49 |
|
50 |
+
# ------------------------------------------------------------------
|
51 |
+
# 🔍 3. Lightweight TF‑IDF embeddings (LangChain interface)
|
52 |
+
# ------------------------------------------------------------------
|
53 |
class TfidfEmbedding(Embeddings):
|
54 |
def __init__(self):
|
55 |
+
self.vec = TfidfVectorizer()
|
56 |
|
57 |
def fit(self, texts):
|
58 |
+
self.vec.fit(texts)
|
59 |
|
60 |
def embed_documents(self, texts):
|
61 |
+
return self.vec.transform(texts).toarray()
|
62 |
|
63 |
def embed_query(self, text):
|
64 |
+
return self.vec.transform([text]).toarray()[0]
|
65 |
|
66 |
+
# ------------------------------------------------------------------
|
67 |
+
# 📝 4. Strict answer prompt
|
68 |
+
# ------------------------------------------------------------------
|
69 |
+
PROMPT_TMPL = """
|
70 |
+
You are a strict healthcare policy checker for Systems Ltd.
|
71 |
Always begin your answer clearly:
|
72 |
- Say "Yes, ..." if the claim is valid
|
73 |
- Say "No, ..." if the claim is not valid
|
74 |
+
- Say "Partially, ..." if it is conditionally allowed
|
75 |
+
Use ONLY the following policy information to justify your answer.
|
76 |
{context}
|
77 |
+
|
78 |
Question: {question}
|
79 |
+
|
80 |
Answer:
|
81 |
"""
|
82 |
+
STRICT_PROMPT = PromptTemplate(
|
83 |
+
template=PROMPT_TMPL, input_variables=["context", "question"]
|
84 |
+
)
|
85 |
+
|
86 |
+
# globals
|
87 |
+
qa_chain = None
|
88 |
+
tr_en2ur = None
|
89 |
+
tr_ur2en = None
|
90 |
|
91 |
+
# ------------------------------------------------------------------
|
92 |
+
# 🚀 5. Initialise on startup (build index + load translators)
|
93 |
+
# ------------------------------------------------------------------
|
94 |
+
def initialise():
|
95 |
+
global qa_chain, tr_en2ur, tr_ur2en
|
96 |
|
97 |
+
docs = extract_clean_sections("healthcare_policy.pdf")
|
98 |
+
texts = [d.page_content for d in docs]
|
99 |
|
100 |
+
emb = TfidfEmbedding()
|
101 |
+
emb.fit(texts)
|
102 |
|
103 |
+
vectdb = FAISS.from_texts(texts, emb)
|
104 |
+
retr = vectdb.as_retriever()
|
105 |
|
106 |
llm = ChatOpenAI(
|
107 |
+
model="tngtech/deepseek-r1t2-chimera:free", # any OpenRouter model OK
|
108 |
base_url="https://openrouter.ai/api/v1",
|
109 |
api_key=os.getenv("OPENAI_API_KEY"),
|
110 |
default_headers={
|
111 |
"HTTP-Referer": "https://huggingface.co",
|
112 |
+
"X-Title": "PDF‑RAG"
|
113 |
},
|
114 |
temperature=0.0
|
115 |
)
|
|
|
117 |
qa_chain = RetrievalQA.from_chain_type(
|
118 |
llm=llm,
|
119 |
chain_type="stuff",
|
120 |
+
retriever=retr,
|
121 |
return_source_documents=False,
|
122 |
+
chain_type_kwargs={"prompt": STRICT_PROMPT},
|
123 |
)
|
124 |
|
125 |
+
# translation pipelines (require `sentencepiece`)
|
126 |
+
tr_en2ur = pipeline("translation", model="Helsinki-NLP/opus-mt-en-ur")
|
127 |
+
tr_ur2en = pipeline("translation", model="Helsinki-NLP/opus-mt-ur-en")
|
128 |
|
129 |
+
# ------------------------------------------------------------------
|
130 |
+
# 🗣️ 6. Translation helpers
|
131 |
+
# ------------------------------------------------------------------
|
132 |
+
def urdu_to_english(text: str) -> str:
|
133 |
+
return tr_ur2en(text)[0]["translation_text"]
|
134 |
|
135 |
+
def english_to_urdu(text: str) -> str:
|
136 |
+
return tr_en2ur(text)[0]["translation_text"]
|
137 |
+
|
138 |
+
# ------------------------------------------------------------------
|
139 |
+
# 🤖 7. Main QA endpoint
|
140 |
+
# ------------------------------------------------------------------
|
141 |
+
def answer(question: str, lang: str):
|
142 |
if qa_chain is None:
|
143 |
+
return "⏳ Policy is still loading, please wait..."
|
144 |
+
|
145 |
try:
|
146 |
+
# 🔄 Urdu → English → RAG
|
147 |
+
q_en = urdu_to_english(question) if lang == "Urdu" else question
|
148 |
+
a_en = qa_chain.run(q_en)
|
149 |
+
|
150 |
+
# 🔄 English → Urdu (if needed)
|
151 |
+
return english_to_urdu(a_en) if lang == "Urdu" else a_en
|
|
|
152 |
except Exception as e:
|
153 |
+
return f"❌ Error: {e}"
|
154 |
|
155 |
+
# ------------------------------------------------------------------
|
156 |
+
# 🎛️ 8. Gradio UI
|
157 |
+
# ------------------------------------------------------------------
|
158 |
+
status = "⏳ Loading policy ..."
|
159 |
|
160 |
with gr.Blocks() as demo:
|
161 |
+
gr.Markdown("## 📋 SL HealthCare Claim Checker — Bilingual (English / اردو)")
|
162 |
|
163 |
+
status_box = gr.Textbox(value=status, label="Status", interactive=False)
|
164 |
|
165 |
with gr.Row():
|
166 |
+
lang_sel = gr.Radio(choices=["English", "Urdu"], value="English",
|
167 |
+
label="Language / زبان")
|
168 |
+
question = gr.Textbox(lines=2, label="Your question / اپنا سوال")
|
169 |
+
ask_btn = gr.Button("Ask / پوچھیں")
|
170 |
+
|
171 |
+
answer_box = gr.Textbox(lines=6, label="Answer / جواب", interactive=False)
|
172 |
|
173 |
+
ask_btn.click(answer, inputs=[question, lang_sel], outputs=answer_box)
|
|
|
174 |
|
175 |
+
def on_load():
|
176 |
+
global status
|
177 |
+
initialise()
|
178 |
+
status = "✅ Policy loaded — ask away!"
|
179 |
+
return status
|
180 |
|
181 |
+
demo.load(fn=on_load, outputs=status_box)
|
182 |
|
183 |
+
# local run
|
184 |
+
if __name__ == "__main__":
|
185 |
+
demo.launch()
|