Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import pdfplumber
|
4 |
+
import re
|
5 |
+
|
6 |
+
from langchain.docstore.document import Document
|
7 |
+
from langchain.vectorstores import FAISS
|
8 |
+
from langchain.embeddings.base import Embeddings
|
9 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
10 |
+
from langchain.chains import RetrievalQA
|
11 |
+
from langchain.prompts import PromptTemplate
|
12 |
+
from langchain_openai import ChatOpenAI
|
13 |
+
from transformers import pipeline
|
14 |
+
|
15 |
+
# Hugging Face-compatible OpenRouter setup
|
16 |
+
os.environ["OPENAI_API_KEY"] = os.environ.get("OPENROUTER_API_KEY")
|
17 |
+
os.environ["OPENAI_API_BASE"] = "https://openrouter.ai/api/v1"
|
18 |
+
os.environ["OPENAI_API_HEADERS"] = '{"HTTP-Referer":"https://huggingface.co", "X-Title":"PDF-RAG"}'
|
19 |
+
|
20 |
+
# Translation models (global)
|
21 |
+
translator_en2ur = None
|
22 |
+
translator_ur2en = None
|
23 |
+
|
24 |
+
# Load and clean the PDF
|
25 |
+
def extract_clean_sections(file_path):
|
26 |
+
with pdfplumber.open(file_path) as pdf:
|
27 |
+
full_text = ""
|
28 |
+
for page in pdf.pages:
|
29 |
+
text = page.extract_text()
|
30 |
+
if text:
|
31 |
+
text = re.sub(r'Systems Campus.*?Lahore', '', text)
|
32 |
+
text = re.sub(r'E-mail:.*?systemsltd\.com', '', text)
|
33 |
+
full_text += text + "\n"
|
34 |
+
|
35 |
+
pattern = r"(?<=\n)([A-Z][^\n]{3,50}):"
|
36 |
+
parts = re.split(pattern, full_text)
|
37 |
+
|
38 |
+
docs = []
|
39 |
+
for i in range(1, len(parts), 2):
|
40 |
+
title = parts[i].strip()
|
41 |
+
content = parts[i + 1].strip()
|
42 |
+
if len(content) > 20:
|
43 |
+
docs.append(Document(page_content=f"{title}:\n{content}", metadata={"section": title}))
|
44 |
+
return docs
|
45 |
+
|
46 |
+
# TF-IDF Embedding for LangChain
|
47 |
+
class TfidfEmbedding(Embeddings):
|
48 |
+
def __init__(self):
|
49 |
+
self.vectorizer = TfidfVectorizer()
|
50 |
+
|
51 |
+
def fit(self, texts):
|
52 |
+
self.vectorizer.fit(texts)
|
53 |
+
|
54 |
+
def embed_documents(self, texts):
|
55 |
+
return self.vectorizer.transform(texts).toarray()
|
56 |
+
|
57 |
+
def embed_query(self, text):
|
58 |
+
return self.vectorizer.transform([text]).toarray()[0]
|
59 |
+
|
60 |
+
# Prompt template
|
61 |
+
TEMPLATE = """
|
62 |
+
You are a strict healthcare policy checker for Systems Ltd.
|
63 |
+
Always begin your answer clearly:
|
64 |
+
- Say "Yes, ..." if the claim is valid
|
65 |
+
- Say "No, ..." if the claim is not valid
|
66 |
+
- Say "Partially, ..." if it's conditionally allowed
|
67 |
+
Use the following policy information to support your answer.
|
68 |
+
{context}
|
69 |
+
Question: {question}
|
70 |
+
Answer:
|
71 |
+
"""
|
72 |
+
custom_prompt = PromptTemplate(template=TEMPLATE, input_variables=["context", "question"])
|
73 |
+
|
74 |
+
# Initialize policy + QA chain + translation models
|
75 |
+
qa_chain = None
|
76 |
+
|
77 |
+
def initialize_policy():
|
78 |
+
global qa_chain, translator_en2ur, translator_ur2en
|
79 |
+
docs = extract_clean_sections("healthcare_policy.pdf")
|
80 |
+
texts = [doc.page_content for doc in docs]
|
81 |
+
embedder = TfidfEmbedding()
|
82 |
+
embedder.fit(texts)
|
83 |
+
vectordb = FAISS.from_texts(texts, embedder)
|
84 |
+
retriever = vectordb.as_retriever()
|
85 |
+
|
86 |
+
llm = ChatOpenAI(
|
87 |
+
model="tngtech/deepseek-r1t2-chimera:free",
|
88 |
+
base_url="https://openrouter.ai/api/v1",
|
89 |
+
api_key=os.getenv("OPENAI_API_KEY"),
|
90 |
+
default_headers={
|
91 |
+
"HTTP-Referer": "https://huggingface.co",
|
92 |
+
"X-Title": "PDF-RAG"
|
93 |
+
},
|
94 |
+
temperature=0.0
|
95 |
+
)
|
96 |
+
|
97 |
+
qa_chain = RetrievalQA.from_chain_type(
|
98 |
+
llm=llm,
|
99 |
+
chain_type="stuff",
|
100 |
+
retriever=retriever,
|
101 |
+
return_source_documents=False,
|
102 |
+
chain_type_kwargs={"prompt": custom_prompt}
|
103 |
+
)
|
104 |
+
|
105 |
+
translator_en2ur = pipeline("translation", model="Helsinki-NLP/opus-mt-en-ur")
|
106 |
+
translator_ur2en = pipeline("translation", model="Helsinki-NLP/opus-mt-ur-en")
|
107 |
+
|
108 |
+
# QA logic with bilingual support
|
109 |
+
def ask_policy_question(inputs):
|
110 |
+
question, language = inputs
|
111 |
+
if qa_chain is None:
|
112 |
+
return "The policy is still loading. Please wait."
|
113 |
+
try:
|
114 |
+
if language == "Urdu":
|
115 |
+
question_en = translator_ur2en(question)[0]['translation_text']
|
116 |
+
answer_en = qa_chain.run(question_en)
|
117 |
+
answer_ur = translator_en2ur(answer_en)[0]['translation_text']
|
118 |
+
return answer_ur
|
119 |
+
else:
|
120 |
+
return qa_chain.run(question)
|
121 |
+
except Exception as e:
|
122 |
+
return f"Error: {str(e)}"
|
123 |
+
|
124 |
+
# Gradio UI
|
125 |
+
status_text = "Loading..."
|
126 |
+
|
127 |
+
with gr.Blocks() as demo:
|
128 |
+
gr.Markdown("## 📋 SL HealthCare Claim Checker (Bilingual: English / اردو)")
|
129 |
+
|
130 |
+
status_box = gr.Textbox(label="Status", value=status_text, interactive=False)
|
131 |
+
|
132 |
+
with gr.Row():
|
133 |
+
language = gr.Radio(choices=["English", "Urdu"], label="Select Language / زبان منتخب کریں", value="English")
|
134 |
+
question = gr.Textbox(label="Enter your claim question / اپنا سوال درج کریں")
|
135 |
+
ask_btn = gr.Button("Ask / پوچھیں")
|
136 |
+
|
137 |
+
answer = gr.Textbox(label="Answer / جواب", lines=6)
|
138 |
+
ask_btn.click(fn=ask_policy_question, inputs=[question, language], outputs=answer)
|
139 |
+
|
140 |
+
def startup():
|
141 |
+
global status_text
|
142 |
+
initialize_policy()
|
143 |
+
status_text = "Policy loaded. You may now ask questions."
|
144 |
+
return status_text
|
145 |
+
|
146 |
+
demo.load(fn=startup, outputs=status_box)
|
147 |
+
|
148 |
+
demo.launch()
|