Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
import gradio as gr
|
6 |
+
import pdfplumber
|
7 |
+
import pytesseract
|
8 |
+
from PIL import Image
|
9 |
+
from langchain.docstore.document import Document
|
10 |
+
from langchain.vectorstores import FAISS
|
11 |
+
from langchain.embeddings.base import Embeddings
|
12 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
13 |
+
from langchain.chains import RetrievalQA
|
14 |
+
from langchain.prompts import PromptTemplate
|
15 |
+
from langchain_openai import ChatOpenAI
|
16 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
17 |
+
|
18 |
+
|
19 |
+
os.environ["OPENAI_API_KEY"] = os.getenv("OPENROUTER_API_KEY")
|
20 |
+
os.environ["OPENAI_API_BASE"] = "https://openrouter.ai/api/v1"
|
21 |
+
os.environ["OPENAI_API_HEADERS"] = '{"HTTP-Referer":"https://huggingface.co/spaces/saadawaissheikh/SystemsHealthcareChatbot", "X-Title":"PDF Chatbot"}'
|
22 |
+
|
23 |
+
# β
Load PDF once at startup
|
24 |
+
PDF_PATH = "HealthCare Policy.pdf"
|
25 |
+
|
26 |
+
class TfidfEmbedding(Embeddings):
|
27 |
+
def __init__(self):
|
28 |
+
self.vectorizer = TfidfVectorizer()
|
29 |
+
|
30 |
+
def fit(self, texts):
|
31 |
+
self.vectorizer.fit(texts)
|
32 |
+
|
33 |
+
def embed_documents(self, texts):
|
34 |
+
return self.vectorizer.transform(texts).toarray()
|
35 |
+
|
36 |
+
def embed_query(self, text):
|
37 |
+
return self.vectorizer.transform([text]).toarray()[0]
|
38 |
+
|
39 |
+
def load_pdf_chunks(pdf_path):
|
40 |
+
with pdfplumber.open(pdf_path) as pdf:
|
41 |
+
full_text = "\n".join([page.extract_text() or "" for page in pdf.pages])
|
42 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=50)
|
43 |
+
chunks = splitter.split_text(full_text)
|
44 |
+
return [Document(page_content=chunk) for chunk in chunks]
|
45 |
+
|
46 |
+
def setup_vectordb(docs):
|
47 |
+
texts = [doc.page_content for doc in docs]
|
48 |
+
embedder = TfidfEmbedding()
|
49 |
+
embedder.fit(texts)
|
50 |
+
vectordb = FAISS.from_texts(texts, embedder)
|
51 |
+
return vectordb
|
52 |
+
|
53 |
+
def get_llm():
|
54 |
+
return ChatOpenAI(
|
55 |
+
model="tngtech/deepseek-r1t2-chimera:free",
|
56 |
+
temperature=0.0
|
57 |
+
)
|
58 |
+
|
59 |
+
def get_qa_chain():
|
60 |
+
docs = load_pdf_chunks(PDF_PATH)
|
61 |
+
vectordb = setup_vectordb(docs)
|
62 |
+
retriever = vectordb.as_retriever()
|
63 |
+
prompt = PromptTemplate.from_template("Answer with Yes or No first. Then explain: {context}\nQuestion: {question}")
|
64 |
+
llm = get_llm()
|
65 |
+
return RetrievalQA.from_chain_type(
|
66 |
+
llm=llm,
|
67 |
+
retriever=retriever,
|
68 |
+
chain_type="stuff",
|
69 |
+
return_source_documents=False,
|
70 |
+
chain_type_kwargs={"prompt": prompt}
|
71 |
+
)
|
72 |
+
|
73 |
+
qa_chain = get_qa_chain()
|
74 |
+
|
75 |
+
# β
Standard PDF QA
|
76 |
+
def ask_question(query):
|
77 |
+
try:
|
78 |
+
return qa_chain.run(query)
|
79 |
+
except Exception as e:
|
80 |
+
return f"Error: {e}"
|
81 |
+
|
82 |
+
# β
Extract Tablets from Image
|
83 |
+
def extract_tablet_names(text):
|
84 |
+
medicines = []
|
85 |
+
for line in text.splitlines():
|
86 |
+
match = re.search(r"\\b([A-Za-z]+(?:\\s+[A-Za-z]+)*)\\s*(\\d+mg|\\d+\\s*mg)?\\b", line)
|
87 |
+
if match:
|
88 |
+
name = match.group(1).strip()
|
89 |
+
if name.lower() not in ["cash", "scaling", "polish"]:
|
90 |
+
medicines.append(name)
|
91 |
+
return list(set(medicines))
|
92 |
+
|
93 |
+
def extract_text_from_image(img_path):
|
94 |
+
image = Image.open(img_path)
|
95 |
+
raw_text = pytesseract.image_to_string(image)
|
96 |
+
return extract_tablet_names(raw_text)
|
97 |
+
|
98 |
+
# β
Tablet Claim Checker
|
99 |
+
def check_tablets(img):
|
100 |
+
tablets = extract_text_from_image(img)
|
101 |
+
if not tablets:
|
102 |
+
return "β No tablets found in receipt."
|
103 |
+
result = ""
|
104 |
+
for med in tablets:
|
105 |
+
question = f"Is the medicine {med} covered under the healthcare policy?"
|
106 |
+
answer = qa_chain.run(question)
|
107 |
+
result += f"π§Ύ **{med}** β {answer}\n\n"
|
108 |
+
return result
|
109 |
+
|
110 |
+
# β
Gradio UI
|
111 |
+
with gr.Blocks(title="Healthcare Chatbot") as app:
|
112 |
+
gr.Markdown("# π¬ Systems Healthcare Chatbot")
|
113 |
+
gr.Markdown("π Policy document loaded. You may now ask questions or upload a medicine receipt to check claims.")
|
114 |
+
|
115 |
+
with gr.Tab("Ask about Policy"):
|
116 |
+
with gr.Row():
|
117 |
+
txt = gr.Textbox(label="Your Question")
|
118 |
+
ans = gr.Textbox(label="Answer")
|
119 |
+
txt.submit(fn=ask_question, inputs=txt, outputs=ans)
|
120 |
+
|
121 |
+
with gr.Tab("Check Tablet Claim"):
|
122 |
+
with gr.Row():
|
123 |
+
img = gr.Image(type="filepath", label="Upload Tablet Receipt")
|
124 |
+
out = gr.Textbox(label="Result")
|
125 |
+
img.change(fn=check_tablets, inputs=img, outputs=out)
|
126 |
+
|
127 |
+
# β
Launch App
|
128 |
+
app.launch()
|