Spaces:
Runtime error
Runtime error
Create app2.py
Browse files
app2.py
ADDED
|
@@ -0,0 +1,601 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
from langchain_community.document_loaders import (
|
| 5 |
+
PyPDFLoader,
|
| 6 |
+
TextLoader,
|
| 7 |
+
DirectoryLoader,
|
| 8 |
+
CSVLoader,
|
| 9 |
+
UnstructuredExcelLoader,
|
| 10 |
+
Docx2txtLoader,
|
| 11 |
+
)
|
| 12 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter, CharacterTextSplitter
|
| 13 |
+
import tiktoken
|
| 14 |
+
import chroma
|
| 15 |
+
import gradio as gr
|
| 16 |
+
import os
|
| 17 |
+
import numpy as np
|
| 18 |
+
|
| 19 |
+
# LLM: openai and google_genai
|
| 20 |
+
import openai
|
| 21 |
+
from langchain_openai import OpenAI, OpenAIEmbeddings, ChatOpenAI
|
| 22 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 23 |
+
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
| 24 |
+
|
| 25 |
+
# LLM: HuggingFace
|
| 26 |
+
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
|
| 27 |
+
from langchain_community.llms import HuggingFaceHub
|
| 28 |
+
|
| 29 |
+
# langchain prompts, memory, chains...
|
| 30 |
+
from langchain.prompts import PromptTemplate, ChatPromptTemplate
|
| 31 |
+
from langchain.chains import ConversationalRetrievalChain
|
| 32 |
+
from langchain_community.chat_message_histories import StreamlitChatMessageHistory
|
| 33 |
+
from operator import itemgetter
|
| 34 |
+
from langchain_core.runnables import RunnableLambda, RunnableParallel, RunnablePassthrough
|
| 35 |
+
from langchain.schema import Document, format_document
|
| 36 |
+
from langchain_core.messages import AIMessage, HumanMessage, get_buffer_string
|
| 37 |
+
|
| 38 |
+
from langchain.retrievers.document_compressors import DocumentCompressorPipeline
|
| 39 |
+
from langchain.text_splitter import CharacterTextSplitter
|
| 40 |
+
from langchain_community.document_transformers import EmbeddingsRedundantFilter,LongContextReorder
|
| 41 |
+
from langchain.retrievers.document_compressors import EmbeddingsFilter
|
| 42 |
+
from langchain.retrievers import ContextualCompressionRetriever
|
| 43 |
+
|
| 44 |
+
from langchain.retrievers import ContextualCompressionRetriever
|
| 45 |
+
from langchain.retrievers.document_compressors import CohereRerank
|
| 46 |
+
from langchain_community.llms import Cohere
|
| 47 |
+
|
| 48 |
+
from langchain.memory import ConversationSummaryBufferMemory,ConversationBufferMemory
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
from langchain.schema import Document
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def langchain_document_loader(TMP_DIR):
|
| 57 |
+
"""
|
| 58 |
+
Load documents from the temporary directory (TMP_DIR).
|
| 59 |
+
Files can be in txt, pdf, CSV or docx format.
|
| 60 |
+
"""
|
| 61 |
+
|
| 62 |
+
documents = []
|
| 63 |
+
|
| 64 |
+
txt_loader = DirectoryLoader(
|
| 65 |
+
TMP_DIR.as_posix(), glob="**/*.txt", loader_cls=TextLoader, show_progress=True
|
| 66 |
+
)
|
| 67 |
+
documents.extend(txt_loader.load())
|
| 68 |
+
|
| 69 |
+
pdf_loader = DirectoryLoader(
|
| 70 |
+
TMP_DIR.as_posix(), glob="**/*.pdf", loader_cls=PyPDFLoader, show_progress=True
|
| 71 |
+
)
|
| 72 |
+
documents.extend(pdf_loader.load())
|
| 73 |
+
|
| 74 |
+
csv_loader = DirectoryLoader(
|
| 75 |
+
TMP_DIR.as_posix(), glob="**/*.csv", loader_cls=CSVLoader, show_progress=True,
|
| 76 |
+
loader_kwargs={"encoding":"utf8"}
|
| 77 |
+
)
|
| 78 |
+
documents.extend(csv_loader.load())
|
| 79 |
+
|
| 80 |
+
doc_loader = DirectoryLoader(
|
| 81 |
+
TMP_DIR.as_posix(),
|
| 82 |
+
glob="**/*.docx",
|
| 83 |
+
loader_cls=Docx2txtLoader,
|
| 84 |
+
show_progress=True,
|
| 85 |
+
)
|
| 86 |
+
documents.extend(doc_loader.load())
|
| 87 |
+
return documents
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
| 92 |
+
separators = ["\n\n", "\n", " ", ""],
|
| 93 |
+
chunk_size = 1600,
|
| 94 |
+
chunk_overlap= 200
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
# Text splitting
|
| 98 |
+
chunks = text_splitter.split_documents(documents=documents)
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def tiktoken_tokens(documents,model="gpt-3.5-turbo"):
|
| 104 |
+
"""Use tiktoken (tokeniser for OpenAI models) to return a list of token lengths per document."""
|
| 105 |
+
encoding = tiktoken.encoding_for_model(model) # returns the encoding used by the model.
|
| 106 |
+
|
| 107 |
+
tokens_length = [len(encoding.encode(documents[i].page_content)) for i in range(len(documents))]
|
| 108 |
+
|
| 109 |
+
return tokens_length
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
chunks_length = tiktoken_tokens(chunks,model="gpt-3.5-turbo")
|
| 113 |
+
|
| 114 |
+
print(f"Number of tokens - Average : {int(np.mean(chunks_length))}")
|
| 115 |
+
print(f"Number of tokens - 25% percentile : {int(np.quantile(chunks_length,0.25))}")
|
| 116 |
+
print(f"Number of tokens - 50% percentile : {int(np.quantile(chunks_length,0.5))}")
|
| 117 |
+
print(f"Number of tokens - 75% percentile : {int(np.quantile(chunks_length,0.75))}")
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def select_embeddings_model(LLM_service="HuggingFace"):
|
| 122 |
+
"""Connect to the embeddings API endpoint by specifying
|
| 123 |
+
the name of the embedding model.
|
| 124 |
+
if LLM_service == "OpenAI":
|
| 125 |
+
embeddings = OpenAIEmbeddings(
|
| 126 |
+
model='text-embedding-ada-002',
|
| 127 |
+
api_key=openai_api_key)
|
| 128 |
+
|
| 129 |
+
if LLM_service == "Google":
|
| 130 |
+
embeddings = GoogleGenerativeAIEmbeddings(
|
| 131 |
+
model="models/embedding-001",
|
| 132 |
+
google_api_key=google_api_key
|
| 133 |
+
)"""
|
| 134 |
+
if LLM_service == "HuggingFace":
|
| 135 |
+
embeddings = HuggingFaceInferenceAPIEmbeddings(
|
| 136 |
+
api_key=HF_key,
|
| 137 |
+
model_name="thenlper/gte-large"
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
return embeddings
|
| 141 |
+
|
| 142 |
+
#embeddings_OpenAI = select_embeddings_model(LLM_service="OpenAI")
|
| 143 |
+
#embeddings_google = select_embeddings_model(LLM_service="Google")
|
| 144 |
+
embeddings_HuggingFace = select_embeddings_model(LLM_service="HuggingFace")
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def create_vectorstore(embeddings,documents,vectorstore_name):
|
| 150 |
+
"""Create a Chroma vector database."""
|
| 151 |
+
persist_directory = (LOCAL_VECTOR_STORE_DIR.as_posix() + "/" + vectorstore_name)
|
| 152 |
+
vector_store = Chroma.from_documents(
|
| 153 |
+
documents=documents,
|
| 154 |
+
embedding=embeddings,
|
| 155 |
+
persist_directory=persist_directory
|
| 156 |
+
)
|
| 157 |
+
return vector_store
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
%%time
|
| 161 |
+
|
| 162 |
+
create_vectorstores = True # change to True to create vectorstores
|
| 163 |
+
|
| 164 |
+
if create_vectorstores:
|
| 165 |
+
"""
|
| 166 |
+
vector_store_OpenAI,_ = create_vectorstore(
|
| 167 |
+
embeddings=embeddings_OpenAI,
|
| 168 |
+
documents = chunks,
|
| 169 |
+
vectorstore_name="Vit_All_OpenAI_Embeddings",
|
| 170 |
+
)
|
| 171 |
+
print("vector_store_OpenAI:",vector_store_OpenAI._collection.count(),"chunks.")
|
| 172 |
+
|
| 173 |
+
vector_store_google,new_vectorstore_name = create_vectorstore(
|
| 174 |
+
embeddings=embeddings_google,
|
| 175 |
+
documents = chunks,
|
| 176 |
+
vectorstore_name="Vit_All_Google_Embeddings"
|
| 177 |
+
)
|
| 178 |
+
print("vector_store_google:",vector_store_google._collection.count(),"chunks.")
|
| 179 |
+
"""
|
| 180 |
+
|
| 181 |
+
vector_store_HF = create_vectorstore(
|
| 182 |
+
embeddings=embeddings_HuggingFace,
|
| 183 |
+
documents = chunks,
|
| 184 |
+
vectorstore_name="Vit_All_HF_Embeddings"
|
| 185 |
+
)
|
| 186 |
+
print("vector_store_HF:",vector_store_HF._collection.count(),"chunks.")
|
| 187 |
+
print("")
|
| 188 |
+
|
| 189 |
+
"""
|
| 190 |
+
vector_store_OpenAI = Chroma(
|
| 191 |
+
persist_directory = LOCAL_VECTOR_STORE_DIR.as_posix() + "/Vit_All_OpenAI_Embeddings",
|
| 192 |
+
embedding_function=embeddings_OpenAI)
|
| 193 |
+
print("vector_store_OpenAI:",vector_store_OpenAI._collection.count(),"chunks.")
|
| 194 |
+
|
| 195 |
+
vector_store_google = Chroma(
|
| 196 |
+
persist_directory = LOCAL_VECTOR_STORE_DIR.as_posix() + "/Vit_All_Google_Embeddings",
|
| 197 |
+
embedding_function=embeddings_google)
|
| 198 |
+
print("vector_store_google:",vector_store_google._collection.count(),"chunks.")
|
| 199 |
+
"""
|
| 200 |
+
|
| 201 |
+
vector_store_HF = Chroma(
|
| 202 |
+
persist_directory = LOCAL_VECTOR_STORE_DIR.as_posix() + "/Vit_All_HF_Embeddings",
|
| 203 |
+
embedding_function=embeddings_HuggingFace)
|
| 204 |
+
print("vector_store_HF:",vector_store_HF._collection.count(),"chunks.")
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
def Vectorstore_backed_retriever(
|
| 208 |
+
vectorstore,search_type="similarity",k=4,score_threshold=None
|
| 209 |
+
):
|
| 210 |
+
"""create a vectorsore-backed retriever
|
| 211 |
+
Parameters:
|
| 212 |
+
search_type: Defines the type of search that the Retriever should perform.
|
| 213 |
+
Can be "similarity" (default), "mmr", or "similarity_score_threshold"
|
| 214 |
+
k: number of documents to return (Default: 4)
|
| 215 |
+
score_threshold: Minimum relevance threshold for similarity_score_threshold (default=None)
|
| 216 |
+
"""
|
| 217 |
+
search_kwargs={}
|
| 218 |
+
if k is not None:
|
| 219 |
+
search_kwargs['k'] = k
|
| 220 |
+
if score_threshold is not None:
|
| 221 |
+
search_kwargs['score_threshold'] = score_threshold
|
| 222 |
+
|
| 223 |
+
retriever = vectorstore.as_retriever(
|
| 224 |
+
search_type=search_type,
|
| 225 |
+
search_kwargs=search_kwargs
|
| 226 |
+
)
|
| 227 |
+
return retriever
|
| 228 |
+
|
| 229 |
+
# similarity search
|
| 230 |
+
#base_retriever_OpenAI = Vectorstore_backed_retriever(vector_store_OpenAI,"similarity",k=10)
|
| 231 |
+
#base_retriever_google = Vectorstore_backed_retriever(vector_store_google,"similarity",k=10)
|
| 232 |
+
base_retriever_HF = Vectorstore_backed_retriever(vector_store_HF,"similarity",k=10)
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
def create_compression_retriever(embeddings, base_retriever, chunk_size=500, k=16, similarity_threshold=None):
|
| 237 |
+
"""Build a ContextualCompressionRetriever.
|
| 238 |
+
We wrap the the base_retriever (a vectorstore-backed retriever) into a ContextualCompressionRetriever.
|
| 239 |
+
The compressor here is a Document Compressor Pipeline, which splits documents
|
| 240 |
+
into smaller chunks, removes redundant documents, filters out the most relevant documents,
|
| 241 |
+
and reorder the documents so that the most relevant are at the top and bottom of the list.
|
| 242 |
+
|
| 243 |
+
Parameters:
|
| 244 |
+
embeddings: OpenAIEmbeddings, GoogleGenerativeAIEmbeddings or HuggingFaceInferenceAPIEmbeddings.
|
| 245 |
+
base_retriever: a vectorstore-backed retriever.
|
| 246 |
+
chunk_size (int): Documents will be splitted into smaller chunks using a CharacterTextSplitter with a default chunk_size of 500.
|
| 247 |
+
k (int): top k relevant chunks to the query are filtered using the EmbeddingsFilter. default =16.
|
| 248 |
+
similarity_threshold : minimum relevance threshold used by the EmbeddingsFilter. default =None.
|
| 249 |
+
"""
|
| 250 |
+
|
| 251 |
+
# 1. splitting documents into smaller chunks
|
| 252 |
+
splitter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=0, separator=". ")
|
| 253 |
+
|
| 254 |
+
# 2. removing redundant documents
|
| 255 |
+
redundant_filter = EmbeddingsRedundantFilter(embeddings=embeddings)
|
| 256 |
+
|
| 257 |
+
# 3. filtering based on relevance to the query
|
| 258 |
+
relevant_filter = EmbeddingsFilter(embeddings=embeddings, k=k, similarity_threshold=similarity_threshold) # similarity_threshold and top K
|
| 259 |
+
|
| 260 |
+
# 4. Reorder the documents
|
| 261 |
+
|
| 262 |
+
# Less relevant document will be at the middle of the list and more relevant elements at the beginning or end of the list.
|
| 263 |
+
# Reference: https://python.langchain.com/docs/modules/data_connection/retrievers/long_context_reorder
|
| 264 |
+
reordering = LongContextReorder()
|
| 265 |
+
|
| 266 |
+
# 5. Create compressor pipeline and retriever
|
| 267 |
+
|
| 268 |
+
pipeline_compressor = DocumentCompressorPipeline(
|
| 269 |
+
transformers=[splitter, redundant_filter, relevant_filter, reordering]
|
| 270 |
+
)
|
| 271 |
+
compression_retriever = ContextualCompressionRetriever(
|
| 272 |
+
base_compressor=pipeline_compressor,
|
| 273 |
+
base_retriever=base_retriever
|
| 274 |
+
)
|
| 275 |
+
|
| 276 |
+
return compression_retriever
|
| 277 |
+
|
| 278 |
+
def CohereRerank_retriever(
|
| 279 |
+
base_retriever,
|
| 280 |
+
cohere_api_key,cohere_model="rerank-multilingual-v2.0", top_n=8
|
| 281 |
+
):
|
| 282 |
+
"""Build a ContextualCompressionRetriever using Cohere Rerank endpoint to reorder the results based on relevance.
|
| 283 |
+
Parameters:
|
| 284 |
+
base_retriever: a Vectorstore-backed retriever
|
| 285 |
+
cohere_api_key: the Cohere API key
|
| 286 |
+
cohere_model: The Cohere model can be either 'rerank-english-v2.0' or 'rerank-multilingual-v2.0', with the latter being the default.
|
| 287 |
+
top_n: top n results returned by Cohere rerank, default = 8.
|
| 288 |
+
"""
|
| 289 |
+
|
| 290 |
+
compressor = CohereRerank(
|
| 291 |
+
cohere_api_key=cohere_api_key,
|
| 292 |
+
model=cohere_model,
|
| 293 |
+
top_n=top_n
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
retriever_Cohere = ContextualCompressionRetriever(
|
| 297 |
+
base_compressor=compressor,
|
| 298 |
+
base_retriever=base_retriever
|
| 299 |
+
)
|
| 300 |
+
return retriever_Cohere
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
def instantiate_LLM(LLM_provider,api_key,temperature=0.5,top_p=0.95,model_name=None):
|
| 305 |
+
"""Instantiate LLM in Langchain.
|
| 306 |
+
Parameters:
|
| 307 |
+
LLM_provider (str): the LLM provider; in ["OpenAI","Google","HuggingFace"]
|
| 308 |
+
model_name (str): in ["gpt-3.5-turbo", "gpt-3.5-turbo-0125", "gpt-4-turbo-preview",
|
| 309 |
+
"gemini-pro", "mistralai/Mistral-7B-Instruct-v0.2"].
|
| 310 |
+
api_key (str): google_api_key or openai_api_key or huggingfacehub_api_token
|
| 311 |
+
temperature (float): Range: 0.0 - 1.0; default = 0.5
|
| 312 |
+
top_p (float): : Range: 0.0 - 1.0; default = 1.
|
| 313 |
+
"""
|
| 314 |
+
if LLM_provider == "OpenAI":
|
| 315 |
+
llm = ChatOpenAI(
|
| 316 |
+
api_key=api_key,
|
| 317 |
+
model=model_name, # in ["gpt-3.5-turbo", "gpt-3.5-turbo-0125", "gpt-4-turbo-preview"]
|
| 318 |
+
temperature=temperature,
|
| 319 |
+
model_kwargs={
|
| 320 |
+
"top_p": top_p
|
| 321 |
+
}
|
| 322 |
+
)
|
| 323 |
+
if LLM_provider == "Google":
|
| 324 |
+
llm = ChatGoogleGenerativeAI(
|
| 325 |
+
google_api_key=api_key,
|
| 326 |
+
model=gemini-pro, # "gemini-pro"
|
| 327 |
+
temperature=temperature,
|
| 328 |
+
top_p=top_p,
|
| 329 |
+
convert_system_message_to_human=True
|
| 330 |
+
)
|
| 331 |
+
if LLM_provider == "HuggingFace":
|
| 332 |
+
llm = HuggingFaceHub(
|
| 333 |
+
repo_id=mistralai/Mistral-7B-Instruct-v0.2, # "mistralai/Mistral-7B-Instruct-v0.2"
|
| 334 |
+
huggingfacehub_api_token=api_key,
|
| 335 |
+
model_kwargs={
|
| 336 |
+
"temperature":temperature,
|
| 337 |
+
"top_p": top_p,
|
| 338 |
+
"do_sample": True,
|
| 339 |
+
"max_new_tokens":1024
|
| 340 |
+
},
|
| 341 |
+
)
|
| 342 |
+
return llm
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
def get_environment_variable(key):
|
| 346 |
+
if key in os.environ:
|
| 347 |
+
value = os.environ.get(key)
|
| 348 |
+
print(f"\n[INFO]: {key} retrieved successfully.")
|
| 349 |
+
else :
|
| 350 |
+
print(f"\n[ERROR]: {key} is not found in your environment variables.")
|
| 351 |
+
value = getpass(f"Insert your {key}")
|
| 352 |
+
return value
|
| 353 |
+
|
| 354 |
+
openai_api_key = os.environ['openai_key']
|
| 355 |
+
google_api_key = os.environ['gemini_key']
|
| 356 |
+
HF_key = os.environ['HF_token']
|
| 357 |
+
cohere_api_key = os.environ['cohere_api']
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
def create_memory(model_name='gpt-3.5-turbo',memory_max_token=None):
|
| 363 |
+
"""Creates a ConversationSummaryBufferMemory for gpt-3.5-turbo.
|
| 364 |
+
Creates a ConversationBufferMemory for the other models."""
|
| 365 |
+
|
| 366 |
+
if model_name=="gpt-3.5-turbo":
|
| 367 |
+
if memory_max_token is None:
|
| 368 |
+
memory_max_token = 1024 # max_tokens for 'gpt-3.5-turbo' = 4096
|
| 369 |
+
memory = ConversationSummaryBufferMemory(
|
| 370 |
+
max_token_limit=memory_max_token,
|
| 371 |
+
llm=ChatOpenAI(model_name="gpt-3.5-turbo",openai_api_key=openai_api_key,temperature=0.1),
|
| 372 |
+
return_messages=True,
|
| 373 |
+
memory_key='chat_history',
|
| 374 |
+
output_key="answer",
|
| 375 |
+
input_key="question"
|
| 376 |
+
)
|
| 377 |
+
else:
|
| 378 |
+
memory = ConversationBufferMemory(
|
| 379 |
+
return_messages=True,
|
| 380 |
+
memory_key='chat_history',
|
| 381 |
+
output_key="answer",
|
| 382 |
+
input_key="question",
|
| 383 |
+
)
|
| 384 |
+
return memory
|
| 385 |
+
|
| 386 |
+
memory.save_context(inputs={"question":"..."},outputs={"answer":"...."}
|
| 387 |
+
|
| 388 |
+
standalone_question_template = """Given the following conversation and a follow up question,
|
| 389 |
+
rephrase the follow up question to be a standalone question, in its original language.\n\n
|
| 390 |
+
Chat History:\n{chat_history}\n
|
| 391 |
+
Follow Up Input: {question}\n
|
| 392 |
+
Standalone question:"""
|
| 393 |
+
|
| 394 |
+
standalone_question_prompt = PromptTemplate(
|
| 395 |
+
input_variables=['chat_history', 'question'],
|
| 396 |
+
template=standalone_question_template
|
| 397 |
+
)
|
| 398 |
+
|
| 399 |
+
|
| 400 |
+
def answer_template(language="english"):
|
| 401 |
+
"""Pass the standalone question along with the chat history and context
|
| 402 |
+
to the `LLM` wihch will answer"""
|
| 403 |
+
|
| 404 |
+
template = f"""Answer the question at the end, using only the following context (delimited by <context></context>).
|
| 405 |
+
Your answer must be in the language at the end.
|
| 406 |
+
|
| 407 |
+
<context>
|
| 408 |
+
{{chat_history}}
|
| 409 |
+
|
| 410 |
+
{{context}}
|
| 411 |
+
</context>
|
| 412 |
+
|
| 413 |
+
Question: {{question}}
|
| 414 |
+
|
| 415 |
+
Language: {language}.
|
| 416 |
+
"""
|
| 417 |
+
return template
|
| 418 |
+
|
| 419 |
+
|
| 420 |
+
chain = ConversationalRetrievalChain.from_llm(
|
| 421 |
+
condense_question_prompt=standalone_question_prompt,
|
| 422 |
+
combine_docs_chain_kwargs={'prompt': answer_prompt},
|
| 423 |
+
condense_question_llm=instantiate_LLM(
|
| 424 |
+
LLM_provider="Google",api_key=HF_key,temperature=0.1,
|
| 425 |
+
model_name="gemini-pro"),
|
| 426 |
+
memory=create_memory("gemini-pro"),
|
| 427 |
+
retriever = retriever,
|
| 428 |
+
llm=instantiate_LLM(
|
| 429 |
+
LLM_provider="Google",api_key=HF_key,temperature=0.5,
|
| 430 |
+
model_name="gemini-pro"),
|
| 431 |
+
chain_type= "stuff",
|
| 432 |
+
verbose= False,
|
| 433 |
+
return_source_documents=True
|
| 434 |
+
)
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
|
| 438 |
+
# 1. load memory using RunnableLambda. Retrieves the chat_history attribute using itemgetter.
|
| 439 |
+
# `RunnablePassthrough.assign` adds the chat_history to the assign function
|
| 440 |
+
|
| 441 |
+
loaded_memory = RunnablePassthrough.assign(
|
| 442 |
+
chat_history=RunnableLambda(memory.load_memory_variables) | itemgetter("chat_history"),
|
| 443 |
+
)
|
| 444 |
+
|
| 445 |
+
# 2. Pass the follow-up question along with the chat history to the LLM, and parse the answer (standalone_question).
|
| 446 |
+
|
| 447 |
+
condense_question_prompt = PromptTemplate(
|
| 448 |
+
input_variables=['chat_history', 'question'],
|
| 449 |
+
template=standalone_question_template
|
| 450 |
+
)
|
| 451 |
+
|
| 452 |
+
condense_question_llm = instantiate_LLM(
|
| 453 |
+
LLM_provider="Google",api_key=google_api_key,temperature=0.1,
|
| 454 |
+
model_name="gemini-pro"
|
| 455 |
+
)
|
| 456 |
+
|
| 457 |
+
standalone_question_chain = {
|
| 458 |
+
"standalone_question": {
|
| 459 |
+
"question": lambda x: x["question"],
|
| 460 |
+
"chat_history": lambda x: get_buffer_string(x["chat_history"]),
|
| 461 |
+
}
|
| 462 |
+
| condense_question_prompt
|
| 463 |
+
| condense_question_llm
|
| 464 |
+
| StrOutputParser(),
|
| 465 |
+
}
|
| 466 |
+
|
| 467 |
+
# 3. Combine load_memory and standalone_question_chain
|
| 468 |
+
|
| 469 |
+
chain_question = loaded_memory | standalone_question_chain
|
| 470 |
+
|
| 471 |
+
|
| 472 |
+
memory.clear()
|
| 473 |
+
memory.save_context(
|
| 474 |
+
{"question": "What does DTC stand for?"},
|
| 475 |
+
{"answer": "Diffuse to Choose."}
|
| 476 |
+
)
|
| 477 |
+
print("Chat history:\n",memory.load_memory_variables({}))
|
| 478 |
+
|
| 479 |
+
follow_up_question = "plaese give more details about it, including its use cases and implementation."
|
| 480 |
+
print("\nFollow-up question:\n",follow_up_question)
|
| 481 |
+
|
| 482 |
+
# invoke chain_question
|
| 483 |
+
response = chain_question.invoke({"question":follow_up_question})["standalone_question"]
|
| 484 |
+
print("\nStandalone_question:\n",response)
|
| 485 |
+
|
| 486 |
+
|
| 487 |
+
|
| 488 |
+
def _combine_documents(docs, document_prompt, document_separator="\n\n"):
|
| 489 |
+
doc_strings = [format_document(doc, document_prompt) for doc in docs]
|
| 490 |
+
return document_separator.join(doc_strings)
|
| 491 |
+
|
| 492 |
+
# 1. Retrieve relevant documents
|
| 493 |
+
|
| 494 |
+
retrieved_documents = {
|
| 495 |
+
"docs": itemgetter("standalone_question") | retriever,
|
| 496 |
+
"question": lambda x: x["standalone_question"],
|
| 497 |
+
}
|
| 498 |
+
|
| 499 |
+
# 2. Get variables ['chat_history', 'context', 'question'] that will be passed to `answer_prompt`
|
| 500 |
+
|
| 501 |
+
DEFAULT_DOCUMENT_PROMPT = PromptTemplate.from_template(template="{page_content}")
|
| 502 |
+
answer_prompt = ChatPromptTemplate.from_template(answer_template()) # 3 variables are expected ['chat_history', 'context', 'question']
|
| 503 |
+
|
| 504 |
+
answer_prompt_variables = {
|
| 505 |
+
"context": lambda x: _combine_documents(docs=x["docs"],document_prompt=DEFAULT_DOCUMENT_PROMPT),
|
| 506 |
+
"question": itemgetter("question"),
|
| 507 |
+
"chat_history": itemgetter("chat_history") # get chat_history from `loaded_memory` variable
|
| 508 |
+
}
|
| 509 |
+
|
| 510 |
+
llm = instantiate_LLM(
|
| 511 |
+
LLM_provider="Google",api_key=google_api_key,temperature=0.5,
|
| 512 |
+
model_name="gemini-pro"
|
| 513 |
+
)
|
| 514 |
+
|
| 515 |
+
# 3. Load memory, format `answer_prompt` with variables (context, question and chat_history) and pass the `answer_prompt to LLM.
|
| 516 |
+
# return answer, docs and standalone_question
|
| 517 |
+
|
| 518 |
+
chain_answer = {
|
| 519 |
+
"answer": loaded_memory | answer_prompt_variables | answer_prompt | llm,
|
| 520 |
+
"docs": lambda x: [
|
| 521 |
+
Document(page_content=doc.page_content,metadata=doc.metadata) # return only page_content and metadata
|
| 522 |
+
for doc in x["docs"]
|
| 523 |
+
],
|
| 524 |
+
"standalone_question": lambda x:x["question"] # return standalone_question
|
| 525 |
+
}
|
| 526 |
+
|
| 527 |
+
|
| 528 |
+
conversational_retriever_chain = chain_question | retrieved_documents | chain_answer
|
| 529 |
+
follow_up_question = "plaese give more details about it, including its use cases and implementation."
|
| 530 |
+
|
| 531 |
+
response = conversational_retriever_chain.invoke({"question":follow_up_question})
|
| 532 |
+
Markdown(response['answer'].content)
|
| 533 |
+
|
| 534 |
+
|
| 535 |
+
memory.save_context(
|
| 536 |
+
{"question": follow_up_question},
|
| 537 |
+
{"answer": response['answer'].content}
|
| 538 |
+
)
|
| 539 |
+
|
| 540 |
+
|
| 541 |
+
|
| 542 |
+
|
| 543 |
+
|
| 544 |
+
|
| 545 |
+
|
| 546 |
+
|
| 547 |
+
|
| 548 |
+
css = """
|
| 549 |
+
#col-container {max-width: 80%; margin-left: auto; margin-right: auto;}
|
| 550 |
+
#chatbox {min-height: 400px;}
|
| 551 |
+
#header {text-align: center;}
|
| 552 |
+
#prompt_template_preview {padding: 1em; border-width: 1px; border-style: solid; border-color: #e0e0e0; border-radius: 4px; min-height: 150px;}
|
| 553 |
+
#total_tokens_str {text-align: right; font-size: 0.8em; color: #666;}
|
| 554 |
+
#label {font-size: 0.8em; padding: 0.5em; margin: 0;}
|
| 555 |
+
.message { font-size: 1.2em; }
|
| 556 |
+
"""
|
| 557 |
+
|
| 558 |
+
with gr.Blocks(css=css) as demo:
|
| 559 |
+
|
| 560 |
+
state = gr.State(get_empty_state())
|
| 561 |
+
|
| 562 |
+
|
| 563 |
+
with gr.Column(elem_id="col-container"):
|
| 564 |
+
|
| 565 |
+
|
| 566 |
+
gr.Markdown("""## Ask questions of *needs assessment* experts,
|
| 567 |
+
## get responses from a *needs assessment experts* version of ChatGPT.
|
| 568 |
+
Ask questions of all of them, or pick your expert below.
|
| 569 |
+
This is a free resource but it does cost us money to run. Unfortunately someone has been abusing this approach.
|
| 570 |
+
In response, we have had to temporarily turn it off until we can put improve the monitoring. Sorry for the inconvenience.""" ,
|
| 571 |
+
elem_id="header")
|
| 572 |
+
|
| 573 |
+
|
| 574 |
+
with gr.Row():
|
| 575 |
+
with gr.Column():
|
| 576 |
+
chatbot = gr.Chatbot(elem_id="chatbox")
|
| 577 |
+
input_message = gr.Textbox(show_label=False, placeholder="Enter your needs assessment question", visible=True).style(container=False)
|
| 578 |
+
|
| 579 |
+
btn_submit = gr.Button("Submit")
|
| 580 |
+
#total_tokens_str = gr.Markdown(elem_id="total_tokens_str")
|
| 581 |
+
btn_clear_conversation = gr.Button("Start New Conversation")
|
| 582 |
+
with gr.Column():
|
| 583 |
+
prompt_template = gr.Dropdown(label="Choose an Expert:", choices=list(prompt_templates.keys()))
|
| 584 |
+
prompt_template_preview = gr.Markdown(elem_id="prompt_template_preview")
|
| 585 |
+
with gr.Accordion("Advanced parameters", open=False):
|
| 586 |
+
temperature = gr.Slider(minimum=0, maximum=2.0, value=0.7, step=0.1, label="Flexibility", info="Higher = More AI, Lower = More Expert")
|
| 587 |
+
max_tokens = gr.Slider(minimum=100, maximum=400, value=200, step=1, label="Length of Response.")
|
| 588 |
+
context_length = gr.Slider(minimum=1, maximum=5, value=2, step=1, label="Context Length", info="Number of previous questions you have asked.")
|
| 589 |
+
|
| 590 |
+
|
| 591 |
+
btn_submit.click(submit_message, [ input_message, prompt_template, temperature, max_tokens, context_length, state], [input_message, chatbot, state])
|
| 592 |
+
input_message.submit(submit_message, [ input_message, prompt_template, temperature, max_tokens, context_length, state], [input_message, chatbot, state])
|
| 593 |
+
btn_clear_conversation.click(clear_conversation, [], [input_message, chatbot, state])
|
| 594 |
+
prompt_template.change(on_prompt_template_change_description, inputs=[prompt_template], outputs=[prompt_template_preview])
|
| 595 |
+
|
| 596 |
+
|
| 597 |
+
demo.load(download_prompt_templates, inputs=None, outputs=[prompt_template], queur=False)
|
| 598 |
+
|
| 599 |
+
|
| 600 |
+
demo.queue(concurrency_count=10)
|
| 601 |
+
demo.launch(height='800px')
|