ryanrwatkins commited on
Commit
6bd735d
·
verified ·
1 Parent(s): df44003

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -473,7 +473,7 @@ def retrieval_blocks(
473
  persist_directory = current_dir + "/" + vectorstore_name,
474
  embedding_function=embeddings
475
  )
476
- print(prompt_template_name)
477
 
478
  # 6. base retriever: Vector store-backed retriever
479
  base_retriever = Vectorstore_backed_retriever(
@@ -660,14 +660,14 @@ def answer_template(language="english"):
660
  answer_prompt = ChatPromptTemplate.from_template(answer_template())
661
 
662
 
663
-
664
  # invoke the ChatPromptTemplate
665
  answer_prompt.invoke(
666
  {"question":"plaese give more details about DTC, including its use cases and implementation.",
667
  "context":[Document(page_content="DTC use cases include...")], # the context is a list of retrieved documents.
668
  "chat_history":memory.chat_memory}
669
  )
670
-
671
 
672
 
673
 
@@ -778,7 +778,7 @@ def create_ConversationalRetrievalChain(
778
  rephrase the follow up question to be a standalone question, in its original language.\n\n
779
  Chat History:\n{chat_history}\n
780
  Follow Up Input: {question}\n
781
- Standalone question:""")
782
 
783
  # 2. Define the answer_prompt
784
  # Pass the standalone question + the chat history + the context (retrieved documents) to the `LLM` wihch will answer
 
473
  persist_directory = current_dir + "/" + vectorstore_name,
474
  embedding_function=embeddings
475
  )
476
+
477
 
478
  # 6. base retriever: Vector store-backed retriever
479
  base_retriever = Vectorstore_backed_retriever(
 
660
  answer_prompt = ChatPromptTemplate.from_template(answer_template())
661
 
662
 
663
+ """
664
  # invoke the ChatPromptTemplate
665
  answer_prompt.invoke(
666
  {"question":"plaese give more details about DTC, including its use cases and implementation.",
667
  "context":[Document(page_content="DTC use cases include...")], # the context is a list of retrieved documents.
668
  "chat_history":memory.chat_memory}
669
  )
670
+ """
671
 
672
 
673
 
 
778
  rephrase the follow up question to be a standalone question, in its original language.\n\n
779
  Chat History:\n{chat_history}\n
780
  Follow Up Input: {question}\n
781
+ Standalone question: {question}""")
782
 
783
  # 2. Define the answer_prompt
784
  # Pass the standalone question + the chat history + the context (retrieved documents) to the `LLM` wihch will answer