off-topic-images / off_topic.py
rxavier's picture
Update off_topic.py
f929de5
raw
history blame
9.55 kB
import re
import time
import asyncio
from io import BytesIO
from typing import List, Optional
import httpx
import matplotlib.pyplot as plt
import numpy as np
import torch
import PIL
import imagehash
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, CLIPModel, CLIPProcessor
from PIL import Image
class Translator:
def __init__(self, model_id: str, device: Optional[str] = None):
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
self.model_id = model_id
self.tokenizer = AutoTokenizer.from_pretrained(
model_id)
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_id).to(self.device)
@property
def _bos_token_attr(self):
if hasattr(self.tokenizer, "get_lang_id"):
return self.tokenizer.get_lang_id
elif hasattr(self.tokenizer, "lang_code_to_id"):
return self.tokenizer.lang_code_to_id
else:
return
@property
def _language_code_mapper(self):
if "nllb" in self.model_id.lower():
return {"en": "eng_Latn",
"es": "spa_Latn",
"pt": "por_Latn"}
elif "m2m" in self.model_id.lower():
return {"en": "en",
"es": "es",
"pt": "pt"}
else:
return {"en": "eng",
"es": "spa",
"pt": "por"}
def translate(self, texts: List[str], src_lang: str, dest_lang: str = "en", max_length: int = 100):
self.tokenizer.src_lang = self._language_code_mapper[src_lang]
inputs = self.tokenizer(texts, return_tensors="pt").to(self.device)
if "opus" in self.model_id.lower():
forced_bos_token_id = None
else:
forced_bos_token_id = self._bos_token_attr[self._language_code_mapper["en"]]
translated_tokens = self.model.generate(
**inputs, forced_bos_token_id=forced_bos_token_id, max_length=max_length
)
return self.tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)
class OffTopicDetector:
def __init__(self, model_id: str, device: Optional[str] = None, image_size: str = "E", translator: Optional[Translator] = None):
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
self.processor = CLIPProcessor.from_pretrained(model_id)
self.model = CLIPModel.from_pretrained(model_id).to(self.device)
self.image_size = image_size
self.translator = translator
def predict_probas(self, images: List[PIL.Image.Image], domain: str, site: str,
title: Optional[str] = None,
valid_templates: Optional[List[str]] = None,
invalid_classes: Optional[List[str]] = None,
autocast: bool = True):
domain = domain.lower()
if valid_templates:
valid_classes = [template.format(domain) for template in valid_templates]
else:
valid_classes = [f"a photo of {domain}", f"brochure with {domain} image", f"instructions for {domain}", f"{domain} diagram"]
if title:
if site == "CBT":
translated_title = title
else:
if site == "MLB":
src_lang = "pt"
else:
src_lang = "es"
translated_title = self.translator.translate(title, src_lang=src_lang, dest_lang="en", max_length=100)[0]
valid_classes.append(translated_title.lower())
if not invalid_classes:
invalid_classes = ["promotional ad with store information", "promotional text", "google maps screenshot", "business card", "qr code"]
n_valid = len(valid_classes)
classes = valid_classes + invalid_classes
print(f"Valid classes: {valid_classes}", f"Invalid classes: {invalid_classes}", sep="\n")
n_classes = len(classes)
if self.device == "cuda":
torch.cuda.synchronize()
start = time.time()
inputs = self.processor(text=classes, images=images, return_tensors="pt", padding=True).to(self.device)
if self.device == "cpu" and autocast is True:
autocast = False
with torch.autocast(self.device, enabled=autocast):
with torch.no_grad():
outputs = self.model(**inputs)
probas = outputs.logits_per_image.softmax(dim=1).cpu().numpy() # we can take the softmax to get the label probabilities
if self.device == "cuda":
torch.cuda.synchronize()
end = time.time()
duration = end - start
print(f"Model time: {round(duration, 2)} s",
f"Model time per image: {round(duration/len(images) * 1000, 0)} ms",
sep="\n")
valid_probas = probas[:, 0:n_valid].sum(axis=1, keepdims=True)
invalid_probas = probas[:, n_valid:n_classes].sum(axis=1, keepdims=True)
return probas, valid_probas, invalid_probas
def predict_probas_url(self, img_urls: List[str], domain: str, site:str,
title: Optional[str] = None,
valid_templates: Optional[List[str]] = None,
invalid_classes: Optional[List[str]] = None,
autocast: bool = True):
images = self.get_images(img_urls)
dedup_images = self._filter_dups(images)
return self.predict_probas(images, domain, site, title, valid_templates, invalid_classes, autocast)
def predict_probas_item(self, url_or_id: str,
use_title: bool = False,
valid_templates: Optional[List[str]] = None,
invalid_classes: Optional[List[str]] = None):
images, domain, site, title = self.get_item_data(url_or_id)
title = title if use_title else None
probas, valid_probas, invalid_probas = self.predict_probas(images, domain, site, title, valid_templates,
invalid_classes)
return images, domain, probas, valid_probas, invalid_probas
def apply_threshold(self, valid_probas: np.ndarray, threshold: float = 0.4):
return valid_probas >= threshold
def get_item_data(self, url_or_id: str):
if url_or_id.startswith("http"):
item_id = "".join(url_or_id.split("/")[3].split("-")[:2])
else:
item_id = re.sub("-", "", url_or_id)
start = time.time()
response = httpx.get(f"https://api.mercadolibre.com/items/{item_id}").json()
title = response["title"]
site, domain = response["domain_id"].split("-")
img_urls = [x["url"] for x in response["pictures"]]
img_urls = [x.replace("-O.jpg", f"-{self.image_size}.jpg") for x in img_urls]
domain_name = httpx.get(f"https://api.mercadolibre.com/catalog_domains/CBT-{domain}").json()["name"]
end = time.time()
duration = end - start
print(f"Items API time: {round(duration * 1000, 0)} ms")
images = self.get_images(img_urls)
dedup_images = self._filter_dups(images)
return dedup_images, domain_name, site, title
def _filter_dups(self, images: List):
if len(images) > 1:
hashes = {}
for img in images:
hashes.update({str(imagehash.average_hash(img)): img})
dedup_hashes = list(dict.fromkeys(hashes))
dedup_images = [img for hash, img in hashes.items() if hash in dedup_hashes]
else:
dedup_images = images
if (diff := len(images) - len(dedup_images)) > 0:
print(f"Filtered {diff} images out of {len(images)} due to matching hashes.")
return dedup_images
def get_images(self, urls: List[str]):
start = time.time()
images = asyncio.run(self._gather_download_tasks(urls))
end = time.time()
duration = end - start
print(f"Download time: {round(duration, 2)} s",
f"Download time per image: {round(duration/len(urls) * 1000, 0)} ms",
sep="\n")
return asyncio.run(self._gather_download_tasks(urls))
async def _gather_download_tasks(self, urls: List[str]):
async def _process_download(url: str, client: httpx.AsyncClient):
response = await client.get(url)
return Image.open(BytesIO(response.content))
async with httpx.AsyncClient() as client:
tasks = [_process_download(url, client) for url in urls]
return await asyncio.gather(*tasks)
def show(self, images: List[PIL.Image.Image], valid_probas: np.ndarray, n_cols: int = 3,
title: Optional[str] = None, threshold: Optional[float] = None):
if threshold is not None:
prediction = self.apply_threshold(valid_probas, threshold)
title_scores = [f"Valid: {pred.squeeze()}" for pred in prediction]
else:
prediction = np.round(valid_probas[:, 0], 2)
title_scores = [f"Valid: {pred:.2f}" for pred in prediction]
n_images = len(images)
n_rows = int(np.ceil(n_images / n_cols))
fig, axes = plt.subplots(n_rows, n_cols, figsize=(16, 16))
for i, ax in enumerate(axes.ravel()):
ax.axis("off")
try:
ax.imshow(images[i])
ax.set_title(title_scores[i])
except IndexError:
continue
if title:
fig.suptitle(title)
fig.tight_layout()
return