Spaces:
Sleeping
Sleeping
First commit
Browse files- app.py +62 -0
- cmu_us_awb_arctic-wav-arctic_a0002.npy +3 -0
- cmu_us_bdl_arctic-wav-arctic_a0009.npy +3 -0
- cmu_us_clb_arctic-wav-arctic_a0144.npy +3 -0
- cmu_us_ksp_arctic-wav-arctic_b0087.npy +3 -0
- cmu_us_rms_arctic-wav-arctic_b0353.npy +3 -0
- cmu_us_slt_arctic-wav-arctic_a0508.npy +3 -0
- notebook.ipynb +133 -0
- requirements.txt +10 -0
- speech.wav +0 -0
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
5 |
+
from io import BytesIO
|
6 |
+
import soundfile as sf
|
7 |
+
|
8 |
+
# Load models outside of function calls for efficiency
|
9 |
+
def load_models():
|
10 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
|
11 |
+
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
12 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
13 |
+
return model, processor, vocoder
|
14 |
+
|
15 |
+
model, processor, vocoder = load_models()
|
16 |
+
|
17 |
+
# Load speaker embeddings
|
18 |
+
def get_speaker_embeddings():
|
19 |
+
speaker_embeddings = np.load("cmu_us_clb_arctic-wav-arctic_a0144.npy")
|
20 |
+
return torch.tensor(speaker_embeddings).unsqueeze(0)
|
21 |
+
|
22 |
+
speaker_embeddings = get_speaker_embeddings()
|
23 |
+
|
24 |
+
# Function to convert text to speech
|
25 |
+
def text_to_speech(text):
|
26 |
+
try:
|
27 |
+
# Segment the text if it's too long
|
28 |
+
max_length = 100 # Set a max length as per model's capability
|
29 |
+
segments = [text[i:i+max_length] for i in range(0, len(text), max_length)]
|
30 |
+
combined_speech = []
|
31 |
+
|
32 |
+
for segment in segments:
|
33 |
+
inputs = processor(text=segment, return_tensors="pt")
|
34 |
+
spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings)
|
35 |
+
with torch.no_grad():
|
36 |
+
speech = vocoder(spectrogram)
|
37 |
+
combined_speech.extend(speech.numpy())
|
38 |
+
|
39 |
+
# Combine audio data into a single numpy array
|
40 |
+
combined_speech = np.array(combined_speech)
|
41 |
+
|
42 |
+
return 16000, combined_speech # Return sample rate and combined audio data
|
43 |
+
except Exception as e:
|
44 |
+
return None, f"Error in text-to-speech conversion: {e}"
|
45 |
+
|
46 |
+
# Gradio Interface
|
47 |
+
def gradio_interface(text):
|
48 |
+
sample_rate, audio_data = text_to_speech(text)
|
49 |
+
if sample_rate and isinstance(audio_data, np.ndarray):
|
50 |
+
return sample_rate, audio_data
|
51 |
+
else:
|
52 |
+
return None # Return None if there's an error
|
53 |
+
|
54 |
+
interface = gr.Interface(
|
55 |
+
fn=gradio_interface,
|
56 |
+
title="Text to Voice", # Add a title to the interface
|
57 |
+
description="Hight Fidelity TTS. Visit <a href='https://ruslanmv.com/' target='_blank'>ruslanmv.com</a> for more information.",
|
58 |
+
inputs=gr.Textbox(lines=10, label="Enter text to convert to speech"),
|
59 |
+
outputs=gr.Audio(label="Generated audio")
|
60 |
+
)
|
61 |
+
|
62 |
+
interface.launch()
|
cmu_us_awb_arctic-wav-arctic_a0002.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5db7a684ab490f21cec1628e00d461a184e369fe4eafb1ee441a796faf4ab6ae
|
3 |
+
size 2176
|
cmu_us_bdl_arctic-wav-arctic_a0009.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:215326eae3a428af8934c385fbe043b36c72849ca17d1d013adeb189e6bd6962
|
3 |
+
size 2176
|
cmu_us_clb_arctic-wav-arctic_a0144.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf67b36c47edfb1851466a1dff081b436bc6809b5ebc12811d9df0c0d0f28d0e
|
3 |
+
size 2176
|
cmu_us_ksp_arctic-wav-arctic_b0087.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f6c5c2a38c2e400179019c560a74c4322f4ee13beda22ee601807545edee283e
|
3 |
+
size 2176
|
cmu_us_rms_arctic-wav-arctic_b0353.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a49dac3e9c3a71a4dbca4c364233c7915ae6e0cb71b2ceaed97296231b95cb50
|
3 |
+
size 2176
|
cmu_us_slt_arctic-wav-arctic_a0508.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f71ffadda3f3a4de079740a0b34963824dc644d9d5442283bd0a2b0d4f44ff0b
|
3 |
+
size 2176
|
notebook.ipynb
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 5,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [
|
8 |
+
{
|
9 |
+
"name": "stdout",
|
10 |
+
"output_type": "stream",
|
11 |
+
"text": [
|
12 |
+
"Running on local URL: http://127.0.0.1:7868\n",
|
13 |
+
"\n",
|
14 |
+
"To create a public link, set `share=True` in `launch()`.\n"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"data": {
|
19 |
+
"text/html": [
|
20 |
+
"<div><iframe src=\"http://127.0.0.1:7868/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
21 |
+
],
|
22 |
+
"text/plain": [
|
23 |
+
"<IPython.core.display.HTML object>"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
"metadata": {},
|
27 |
+
"output_type": "display_data"
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"data": {
|
31 |
+
"text/plain": []
|
32 |
+
},
|
33 |
+
"execution_count": 5,
|
34 |
+
"metadata": {},
|
35 |
+
"output_type": "execute_result"
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"name": "stderr",
|
39 |
+
"output_type": "stream",
|
40 |
+
"text": [
|
41 |
+
"c:\\Users\\066226758\\Blog\\Virtual-Webcam-Chatbot\\.venv\\lib\\site-packages\\gradio\\processing_utils.py:583: UserWarning: Trying to convert audio automatically from float32 to 16-bit int format.\n",
|
42 |
+
" warnings.warn(warning.format(data.dtype))\n"
|
43 |
+
]
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"source": [
|
47 |
+
"import gradio as gr\n",
|
48 |
+
"import numpy as np\n",
|
49 |
+
"import torch\n",
|
50 |
+
"from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan\n",
|
51 |
+
"from io import BytesIO\n",
|
52 |
+
"import soundfile as sf\n",
|
53 |
+
"\n",
|
54 |
+
"# Load models outside of function calls for efficiency\n",
|
55 |
+
"def load_models():\n",
|
56 |
+
" model = SpeechT5ForTextToSpeech.from_pretrained(\"microsoft/speecht5_tts\")\n",
|
57 |
+
" processor = SpeechT5Processor.from_pretrained(\"microsoft/speecht5_tts\")\n",
|
58 |
+
" vocoder = SpeechT5HifiGan.from_pretrained(\"microsoft/speecht5_hifigan\")\n",
|
59 |
+
" return model, processor, vocoder\n",
|
60 |
+
"\n",
|
61 |
+
"model, processor, vocoder = load_models()\n",
|
62 |
+
"\n",
|
63 |
+
"# Load speaker embeddings\n",
|
64 |
+
"def get_speaker_embeddings():\n",
|
65 |
+
" speaker_embeddings = np.load(\"cmu_us_clb_arctic-wav-arctic_a0144.npy\")\n",
|
66 |
+
" return torch.tensor(speaker_embeddings).unsqueeze(0)\n",
|
67 |
+
"\n",
|
68 |
+
"speaker_embeddings = get_speaker_embeddings()\n",
|
69 |
+
"\n",
|
70 |
+
"# Function to convert text to speech\n",
|
71 |
+
"def text_to_speech(text):\n",
|
72 |
+
" try:\n",
|
73 |
+
" # Segment the text if it's too long\n",
|
74 |
+
" max_length = 100 # Set a max length as per model's capability\n",
|
75 |
+
" segments = [text[i:i+max_length] for i in range(0, len(text), max_length)]\n",
|
76 |
+
" combined_speech = []\n",
|
77 |
+
"\n",
|
78 |
+
" for segment in segments:\n",
|
79 |
+
" inputs = processor(text=segment, return_tensors=\"pt\")\n",
|
80 |
+
" spectrogram = model.generate_speech(inputs[\"input_ids\"], speaker_embeddings)\n",
|
81 |
+
" with torch.no_grad():\n",
|
82 |
+
" speech = vocoder(spectrogram)\n",
|
83 |
+
" combined_speech.extend(speech.numpy())\n",
|
84 |
+
"\n",
|
85 |
+
" # Combine audio data into a single numpy array\n",
|
86 |
+
" combined_speech = np.array(combined_speech)\n",
|
87 |
+
"\n",
|
88 |
+
" return 16000, combined_speech # Return sample rate and combined audio data\n",
|
89 |
+
" except Exception as e:\n",
|
90 |
+
" return None, f\"Error in text-to-speech conversion: {e}\"\n",
|
91 |
+
"\n",
|
92 |
+
"# Gradio Interface\n",
|
93 |
+
"def gradio_interface(text):\n",
|
94 |
+
" sample_rate, audio_data = text_to_speech(text)\n",
|
95 |
+
" if sample_rate and isinstance(audio_data, np.ndarray):\n",
|
96 |
+
" return sample_rate, audio_data\n",
|
97 |
+
" else:\n",
|
98 |
+
" return None # Return None if there's an error\n",
|
99 |
+
"\n",
|
100 |
+
"interface = gr.Interface(\n",
|
101 |
+
" fn=gradio_interface,\n",
|
102 |
+
" title=\"Text to Voice T5\", # Add a title to the interface\n",
|
103 |
+
" description=\"Developed by Ruslan Magana, visit <a href='https://ruslanmv.com/' target='_blank'>ruslanmv.com</a> for more information.\",\n",
|
104 |
+
" inputs=gr.Textbox(lines=10, label=\"Enter text to convert to speech\"),\n",
|
105 |
+
" outputs=gr.Audio(label=\"Generated audio\")\n",
|
106 |
+
")\n",
|
107 |
+
"\n",
|
108 |
+
"interface.launch()\n"
|
109 |
+
]
|
110 |
+
}
|
111 |
+
],
|
112 |
+
"metadata": {
|
113 |
+
"kernelspec": {
|
114 |
+
"display_name": "Python (watson)",
|
115 |
+
"language": "python",
|
116 |
+
"name": "watson"
|
117 |
+
},
|
118 |
+
"language_info": {
|
119 |
+
"codemirror_mode": {
|
120 |
+
"name": "ipython",
|
121 |
+
"version": 3
|
122 |
+
},
|
123 |
+
"file_extension": ".py",
|
124 |
+
"mimetype": "text/x-python",
|
125 |
+
"name": "python",
|
126 |
+
"nbconvert_exporter": "python",
|
127 |
+
"pygments_lexer": "ipython3",
|
128 |
+
"version": "3.10.11"
|
129 |
+
}
|
130 |
+
},
|
131 |
+
"nbformat": 4,
|
132 |
+
"nbformat_minor": 2
|
133 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit_option_menu == 0.3.2
|
2 |
+
requests==2.28.1
|
3 |
+
times==0.7
|
4 |
+
htbuilder==0.6.1
|
5 |
+
transformers==4.29.2
|
6 |
+
torch==2.0.1
|
7 |
+
soundfile==0.12.1
|
8 |
+
torchaudio == 2.0.2
|
9 |
+
sentencepiece==0.1.99
|
10 |
+
soundfile
|
speech.wav
ADDED
Binary file (10.3 kB). View file
|
|