Spaces:
Sleeping
Sleeping
First commit
Browse files- app.py +161 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import PyPDF2
|
4 |
+
import docx2txt
|
5 |
+
import logging
|
6 |
+
|
7 |
+
import nltk
|
8 |
+
from nltk.corpus import stopwords
|
9 |
+
from nltk.tokenize import word_tokenize
|
10 |
+
|
11 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
12 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
13 |
+
|
14 |
+
# Configure logging
|
15 |
+
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
16 |
+
|
17 |
+
# ----------------------------------------------------------------------------
|
18 |
+
# 1) Utility Functions: Parsing & Preprocessing
|
19 |
+
# ----------------------------------------------------------------------------
|
20 |
+
|
21 |
+
def extract_text_from_pdf(file_obj):
|
22 |
+
"""Extract all text from a PDF file object."""
|
23 |
+
text_content = []
|
24 |
+
try:
|
25 |
+
logging.info("Loading PDF file.")
|
26 |
+
pdf_reader = PyPDF2.PdfReader(file_obj)
|
27 |
+
for page in pdf_reader.pages:
|
28 |
+
page_text = page.extract_text()
|
29 |
+
if page_text:
|
30 |
+
text_content.append(page_text)
|
31 |
+
extracted_text = "\n".join(text_content)
|
32 |
+
logging.info(f"Extracted PDF content: {extracted_text[:500]}...")
|
33 |
+
|
34 |
+
print(extracted_text) # Print the extracted text
|
35 |
+
|
36 |
+
return extracted_text
|
37 |
+
except Exception as e:
|
38 |
+
logging.error(f"Error reading PDF: {e}")
|
39 |
+
return f"Error reading PDF: {e}"
|
40 |
+
|
41 |
+
def extract_text_from_docx(file_path):
|
42 |
+
"""Extract all text from a DOCX file on disk."""
|
43 |
+
try:
|
44 |
+
logging.info("Loading DOCX file.")
|
45 |
+
extracted_text = docx2txt.process(file_path)
|
46 |
+
logging.info(f"Extracted DOCX content: {extracted_text[:500]}...")
|
47 |
+
|
48 |
+
print(extracted_text) # Print the extracted text
|
49 |
+
|
50 |
+
return extracted_text
|
51 |
+
except Exception as e:
|
52 |
+
logging.error(f"Error reading DOCX: {e}")
|
53 |
+
return f"Error reading DOCX: {e}"
|
54 |
+
|
55 |
+
def extract_text_from_txt(file_obj):
|
56 |
+
"""Extract all text from a TXT file object."""
|
57 |
+
try:
|
58 |
+
logging.info("Loading TXT file.")
|
59 |
+
extracted_text = file_obj.read().decode("utf-8", errors="ignore")
|
60 |
+
logging.info(f"Extracted TXT content: {extracted_text[:500]}...")
|
61 |
+
|
62 |
+
print(extracted_text) # Print the extracted text
|
63 |
+
|
64 |
+
return extracted_text
|
65 |
+
except Exception as e:
|
66 |
+
logging.error(f"Error reading TXT: {e}")
|
67 |
+
return f"Error reading TXT: {e}"
|
68 |
+
|
69 |
+
def preprocess_text(text):
|
70 |
+
"""
|
71 |
+
Lowercase, tokenize, remove stopwords and non-alphabetic tokens,
|
72 |
+
and then rejoin into a clean string.
|
73 |
+
"""
|
74 |
+
logging.info("Preprocessing text.")
|
75 |
+
text = str(text).lower()
|
76 |
+
tokens = word_tokenize(text)
|
77 |
+
stop_words = set(stopwords.words('english'))
|
78 |
+
filtered_tokens = [t for t in tokens if t.isalpha() and t not in stop_words]
|
79 |
+
processed_text = " ".join(filtered_tokens)
|
80 |
+
logging.info(f"Preprocessed text: {processed_text[:500]}...")
|
81 |
+
return processed_text
|
82 |
+
|
83 |
+
# ----------------------------------------------------------------------------
|
84 |
+
# 2) Core Ranking Logic with TF-IDF & Cosine Similarity
|
85 |
+
# ----------------------------------------------------------------------------
|
86 |
+
|
87 |
+
def rank_resumes_with_tfidf(job_description: str, resumes: dict):
|
88 |
+
logging.info("Ranking resumes using TF-IDF.")
|
89 |
+
preprocessed_jd = preprocess_text(job_description)
|
90 |
+
preprocessed_resumes = {fname: preprocess_text(txt) for fname, txt in resumes.items()}
|
91 |
+
corpus = [preprocessed_jd] + list(preprocessed_resumes.values())
|
92 |
+
filenames = list(preprocessed_resumes.keys())
|
93 |
+
vectorizer = TfidfVectorizer()
|
94 |
+
tfidf_matrix = vectorizer.fit_transform(corpus)
|
95 |
+
jd_vector = tfidf_matrix[0:1]
|
96 |
+
resume_vectors = tfidf_matrix[1:]
|
97 |
+
similarities = cosine_similarity(jd_vector, resume_vectors).flatten()
|
98 |
+
results = list(zip(filenames, similarities))
|
99 |
+
results_sorted = sorted(results, key=lambda x: x[1], reverse=True)
|
100 |
+
logging.info(f"Ranking completed: {results_sorted}")
|
101 |
+
return results_sorted
|
102 |
+
|
103 |
+
# ----------------------------------------------------------------------------
|
104 |
+
# 3) Gradio Callback Function
|
105 |
+
# ----------------------------------------------------------------------------
|
106 |
+
|
107 |
+
def analyze_cvs(job_description, cv_files):
|
108 |
+
logging.info("Starting CV analysis.")
|
109 |
+
resumes_data = {}
|
110 |
+
|
111 |
+
for uploaded_file in cv_files:
|
112 |
+
|
113 |
+
filename = os.path.basename(uploaded_file.name) #Get the base name, handling potential Gradio changes
|
114 |
+
|
115 |
+
file_ext = os.path.splitext(filename)[1].lower()
|
116 |
+
temp_filepath = None
|
117 |
+
|
118 |
+
try:
|
119 |
+
logging.info(f"Processing file: {filename}")
|
120 |
+
if file_ext == ".pdf":
|
121 |
+
with open(uploaded_file.name, "rb") as f: # Open the temporary file created by gradio
|
122 |
+
file_content = extract_text_from_pdf(f)
|
123 |
+
elif file_ext == ".txt":
|
124 |
+
with open(uploaded_file.name, "rb") as f: # Open the temporary file created by gradio
|
125 |
+
file_content = extract_text_from_txt(f)
|
126 |
+
elif file_ext == ".docx":
|
127 |
+
file_content = extract_text_from_docx(uploaded_file.name) #docx2txt can handle the temporary filepath
|
128 |
+
else:
|
129 |
+
file_content = "Unsupported file type."
|
130 |
+
except Exception as e:
|
131 |
+
logging.error(f"Error processing file: {e}")
|
132 |
+
file_content = f"Error processing file: {e}"
|
133 |
+
|
134 |
+
logging.info(f"Extracted CV Content ({filename}): {file_content[:500]}...")
|
135 |
+
resumes_data[filename] = file_content
|
136 |
+
|
137 |
+
ranked_results = rank_resumes_with_tfidf(job_description, resumes_data)
|
138 |
+
display_data = [[filename, round(float(score), 3)] for filename, score in ranked_results]
|
139 |
+
logging.info("Analysis completed successfully.")
|
140 |
+
return display_data
|
141 |
+
|
142 |
+
# ----------------------------------------------------------------------------
|
143 |
+
# 4) Gradio Interface
|
144 |
+
# ----------------------------------------------------------------------------
|
145 |
+
|
146 |
+
def create_gradio_interface():
|
147 |
+
job_description_input = gr.Textbox(label="Job Description", placeholder="Describe the role here...", lines=4)
|
148 |
+
cv_input = gr.File(label="Upload resumes (PDF/DOCX/TXT)", file_count="multiple", type="filepath")
|
149 |
+
results_output = gr.Dataframe(headers=["Candidate CV", "Similarity Score"], label="Ranked Candidates")
|
150 |
+
demo = gr.Interface(fn=analyze_cvs, inputs=[job_description_input, cv_input], outputs=[results_output], title="Resume Ranking with TF-IDF")
|
151 |
+
return demo
|
152 |
+
|
153 |
+
# ----------------------------------------------------------------------------
|
154 |
+
# 5) Main Script
|
155 |
+
# ----------------------------------------------------------------------------
|
156 |
+
|
157 |
+
if __name__ == "__main__":
|
158 |
+
nltk.download('punkt', quiet=True)
|
159 |
+
nltk.download('stopwords', quiet=True)
|
160 |
+
app = create_gradio_interface()
|
161 |
+
app.launch(server_name="0.0.0.0", server_port=7860, debug=True)
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
PyPDF2
|
2 |
+
docx2txt
|