ruslanmv commited on
Commit
71c7cb5
·
verified ·
1 Parent(s): 1b83380

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +58 -24
app.py CHANGED
@@ -1,11 +1,39 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
  def respond(
11
  message,
@@ -24,7 +52,6 @@ def respond(
24
  messages.append({"role": "assistant", "content": val[1]})
25
 
26
  messages.append({"role": "user", "content": message})
27
-
28
  response = ""
29
 
30
  for message in client.chat_completion(
@@ -35,30 +62,37 @@ def respond(
35
  top_p=top_p,
36
  ):
37
  token = message.choices[0].delta.content
38
-
39
  response += token
40
  yield response
41
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
 
 
 
 
 
 
 
62
 
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ import PyPDF2
4
+ import docx
5
+ import io
6
 
 
 
 
7
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
9
+ def extract_text_from_pdf(pdf_file):
10
+ pdf_reader = PyPDF2.PdfReader(io.BytesIO(pdf_file))
11
+ text = ""
12
+ for page in pdf_reader.pages:
13
+ text += page.extract_text() + "\n"
14
+ return text
15
+
16
+ def extract_text_from_docx(docx_file):
17
+ doc = docx.Document(io.BytesIO(docx_file))
18
+ return "\n".join([para.text for para in doc.paragraphs])
19
+
20
+ def parse_cv(file):
21
+ if file is None:
22
+ return "Please upload a CV file."
23
+
24
+ file_ext = file.name.split(".")[-1].lower()
25
+ file_bytes = file.read()
26
+
27
+ if file_ext == "pdf":
28
+ text = extract_text_from_pdf(file_bytes)
29
+ elif file_ext == "docx":
30
+ text = extract_text_from_docx(file_bytes)
31
+ else:
32
+ return "Unsupported file format. Please upload a PDF or DOCX file."
33
+
34
+ prompt = f"Analyze the following CV and generate a professional summary and improvement suggestions:\n\n{text}"
35
+ response = client.text_generation(prompt, max_tokens=512)
36
+ return response
37
 
38
  def respond(
39
  message,
 
52
  messages.append({"role": "assistant", "content": val[1]})
53
 
54
  messages.append({"role": "user", "content": message})
 
55
  response = ""
56
 
57
  for message in client.chat_completion(
 
62
  top_p=top_p,
63
  ):
64
  token = message.choices[0].delta.content
 
65
  response += token
66
  yield response
67
 
68
+ demo = gr.Blocks()
69
 
70
+ with demo:
71
+ gr.Markdown("## AI-powered CV Analyzer and Chatbot")
72
+ with gr.Tab("Chatbot"):
73
+ chat_interface = gr.ChatInterface(
74
+ respond,
75
+ additional_inputs=[
76
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
77
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
78
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
79
+ gr.Slider(
80
+ minimum=0.1,
81
+ maximum=1.0,
82
+ value=0.95,
83
+ step=0.05,
84
+ label="Top-p (nucleus sampling)",
85
+ ),
86
+ ],
87
+ )
88
+
89
+ with gr.Tab("CV Analyzer"):
90
+ gr.Markdown("### Upload your CV (PDF or DOCX) to receive a professional analysis.")
91
+ file_input = gr.File(label="Upload CV", type="file")
92
+ output_text = gr.Textbox(label="CV Analysis Report", lines=10)
93
+ analyze_button = gr.Button("Analyze CV")
94
+
95
+ analyze_button.click(parse_cv, inputs=file_input, outputs=output_text)
96
 
97
  if __name__ == "__main__":
98
  demo.launch()