Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,37 +2,66 @@ import gradio as gr
|
|
2 |
from huggingface_hub import InferenceClient
|
3 |
import PyPDF2
|
4 |
import io
|
5 |
-
from docx import Document #
|
6 |
|
|
|
7 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
9 |
-
def extract_text_from_pdf(
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
text
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
def extract_text_from_docx(
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
def parse_cv(file, job_description):
|
|
|
21 |
if file is None:
|
22 |
return "Please upload a CV file."
|
23 |
-
|
24 |
file_ext = file.name.split(".")[-1].lower()
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
27 |
if file_ext == "pdf":
|
28 |
text = extract_text_from_pdf(file_bytes)
|
29 |
elif file_ext == "docx":
|
30 |
text = extract_text_from_docx(file_bytes)
|
31 |
else:
|
32 |
return "Unsupported file format. Please upload a PDF or DOCX file."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
prompt = f"Analyze the following CV against the job description provided. Provide a summary, an assessment of fit, and a score from 0 to 10.\n\nJob Description:\n{job_description}\n\nCandidate CV:\n{text}"
|
35 |
-
response = client.text_generation(prompt, max_tokens=512)
|
36 |
return response
|
37 |
|
38 |
def respond(
|
@@ -43,32 +72,40 @@ def respond(
|
|
43 |
temperature,
|
44 |
top_p,
|
45 |
):
|
|
|
|
|
|
|
46 |
messages = [{"role": "system", "content": system_message}]
|
47 |
|
48 |
-
for
|
49 |
-
if
|
50 |
-
messages.append({"role": "user", "content":
|
51 |
-
if
|
52 |
-
messages.append({"role": "assistant", "content":
|
53 |
|
54 |
messages.append({"role": "user", "content": message})
|
55 |
response = ""
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
67 |
|
|
|
68 |
demo = gr.Blocks()
|
69 |
|
70 |
with demo:
|
71 |
gr.Markdown("## AI-powered CV Analyzer and Chatbot")
|
|
|
72 |
with gr.Tab("Chatbot"):
|
73 |
chat_interface = gr.ChatInterface(
|
74 |
respond,
|
@@ -87,7 +124,9 @@ with demo:
|
|
87 |
)
|
88 |
|
89 |
with gr.Tab("CV Analyzer"):
|
90 |
-
gr.Markdown(
|
|
|
|
|
91 |
file_input = gr.File(label="Upload CV", type="file")
|
92 |
job_desc_input = gr.Textbox(label="Job Description", lines=5)
|
93 |
output_text = gr.Textbox(label="CV Analysis Report", lines=10)
|
@@ -96,4 +135,4 @@ with demo:
|
|
96 |
analyze_button.click(parse_cv, inputs=[file_input, job_desc_input], outputs=output_text)
|
97 |
|
98 |
if __name__ == "__main__":
|
99 |
-
demo.launch()
|
|
|
2 |
from huggingface_hub import InferenceClient
|
3 |
import PyPDF2
|
4 |
import io
|
5 |
+
from docx import Document # Make sure you have installed python-docx
|
6 |
|
7 |
+
# Initialize the client for Hugging Face inference.
|
8 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
9 |
|
10 |
+
def extract_text_from_pdf(pdf_file_bytes):
|
11 |
+
"""Extract text from a PDF file given as bytes."""
|
12 |
+
try:
|
13 |
+
pdf_reader = PyPDF2.PdfReader(io.BytesIO(pdf_file_bytes))
|
14 |
+
text = ""
|
15 |
+
for page in pdf_reader.pages:
|
16 |
+
page_text = page.extract_text()
|
17 |
+
if page_text:
|
18 |
+
text += page_text + "\n"
|
19 |
+
return text.strip() or "No text could be extracted from the PDF."
|
20 |
+
except Exception as e:
|
21 |
+
return f"Error reading PDF: {str(e)}"
|
22 |
|
23 |
+
def extract_text_from_docx(docx_file_bytes):
|
24 |
+
"""Extract text from a DOCX file given as bytes."""
|
25 |
+
try:
|
26 |
+
doc = Document(io.BytesIO(docx_file_bytes))
|
27 |
+
text = "\n".join(para.text for para in doc.paragraphs)
|
28 |
+
return text.strip() or "No text could be extracted from the DOCX file."
|
29 |
+
except Exception as e:
|
30 |
+
return f"Error reading DOCX: {str(e)}"
|
31 |
|
32 |
def parse_cv(file, job_description):
|
33 |
+
"""Analyze a CV (PDF or DOCX) against a job description and generate a report."""
|
34 |
if file is None:
|
35 |
return "Please upload a CV file."
|
36 |
+
|
37 |
file_ext = file.name.split(".")[-1].lower()
|
38 |
+
try:
|
39 |
+
file_bytes = file.read()
|
40 |
+
except Exception as e:
|
41 |
+
return f"Error reading the uploaded file: {str(e)}"
|
42 |
+
|
43 |
if file_ext == "pdf":
|
44 |
text = extract_text_from_pdf(file_bytes)
|
45 |
elif file_ext == "docx":
|
46 |
text = extract_text_from_docx(file_bytes)
|
47 |
else:
|
48 |
return "Unsupported file format. Please upload a PDF or DOCX file."
|
49 |
+
|
50 |
+
if text.startswith("Error reading"):
|
51 |
+
return text # Return error from extraction if any.
|
52 |
+
|
53 |
+
prompt = (
|
54 |
+
f"Analyze the following CV against the provided job description. "
|
55 |
+
f"Provide a summary, an assessment of fit, and a score from 0 to 10.\n\n"
|
56 |
+
f"Job Description:\n{job_description}\n\n"
|
57 |
+
f"Candidate CV:\n{text}"
|
58 |
+
)
|
59 |
+
|
60 |
+
try:
|
61 |
+
response = client.text_generation(prompt, max_tokens=512)
|
62 |
+
except Exception as e:
|
63 |
+
return f"Error during CV analysis: {str(e)}"
|
64 |
|
|
|
|
|
65 |
return response
|
66 |
|
67 |
def respond(
|
|
|
72 |
temperature,
|
73 |
top_p,
|
74 |
):
|
75 |
+
"""
|
76 |
+
Chatbot response generator that interacts with a conversational model.
|
77 |
+
"""
|
78 |
messages = [{"role": "system", "content": system_message}]
|
79 |
|
80 |
+
for user_msg, bot_msg in history:
|
81 |
+
if user_msg:
|
82 |
+
messages.append({"role": "user", "content": user_msg})
|
83 |
+
if bot_msg:
|
84 |
+
messages.append({"role": "assistant", "content": bot_msg})
|
85 |
|
86 |
messages.append({"role": "user", "content": message})
|
87 |
response = ""
|
88 |
|
89 |
+
try:
|
90 |
+
for message_chunk in client.chat_completion(
|
91 |
+
messages,
|
92 |
+
max_tokens=max_tokens,
|
93 |
+
stream=True,
|
94 |
+
temperature=temperature,
|
95 |
+
top_p=top_p,
|
96 |
+
):
|
97 |
+
token = message_chunk.choices[0].delta.content
|
98 |
+
response += token
|
99 |
+
yield response
|
100 |
+
except Exception as e:
|
101 |
+
yield f"Error during chat generation: {str(e)}"
|
102 |
|
103 |
+
# Build the Gradio interface
|
104 |
demo = gr.Blocks()
|
105 |
|
106 |
with demo:
|
107 |
gr.Markdown("## AI-powered CV Analyzer and Chatbot")
|
108 |
+
|
109 |
with gr.Tab("Chatbot"):
|
110 |
chat_interface = gr.ChatInterface(
|
111 |
respond,
|
|
|
124 |
)
|
125 |
|
126 |
with gr.Tab("CV Analyzer"):
|
127 |
+
gr.Markdown(
|
128 |
+
"### Upload your CV (PDF or DOCX) and provide the job description to receive a professional analysis and suitability score."
|
129 |
+
)
|
130 |
file_input = gr.File(label="Upload CV", type="file")
|
131 |
job_desc_input = gr.Textbox(label="Job Description", lines=5)
|
132 |
output_text = gr.Textbox(label="CV Analysis Report", lines=10)
|
|
|
135 |
analyze_button.click(parse_cv, inputs=[file_input, job_desc_input], outputs=output_text)
|
136 |
|
137 |
if __name__ == "__main__":
|
138 |
+
demo.launch()
|