# import torchvision.transforms as transforms # import torch.nn.functional as F # import cv2 # import os # import logging # from pathlib import Path import numpy as np # import os import torch import matplotlib # import cv2 # import random # from PIL import Image # import imageio def prob_to_mask(prob): """ Transforms a probability map of stopping points (shape: (n_layer+1, H, W)) into a binary mask (shape: (H, W, n_layer, 1)) where for each pixel, layers with index ≤ stopping index (as given by argmax) are marked valid. """ num_layer_plus1, H, W = prob.shape # Get stopping index for each pixel; values are in {0, 1, ..., n_layer} stopping_indices = torch.argmax(prob, dim=0) # (H, W) # Create a tensor with layer indices [1, 2, ..., n_layer] layer_indices = torch.arange(1, num_layer_plus1, device=prob.device).view(-1, 1, 1) # Compare: a layer is valid if its index is <= the stopping index. pred_mask = (layer_indices <= stopping_indices.unsqueeze(0)) # Permute and unsqueeze to get shape (H, W, n_layer, 1) pred_mask = pred_mask.permute(1, 2, 0).unsqueeze(-1) return pred_mask def colorize(value, vmin=None, vmax=None, cmap='rainbow', invalid_val=-99, invalid_mask=None, background_color=(128, 128, 128, 255), gamma_corrected=False, value_transform=None): """Converts a depth map to a color image. Args: value (torch.Tensor, numpy.ndarry): Input depth map. Shape: (H, W) or (1, H, W) or (1, 1, H, W). All singular dimensions are squeezed vmin (float, optional): vmin-valued entries are mapped to start color of cmap. If None, value.min() is used. Defaults to None. vmax (float, optional): vmax-valued entries are mapped to end color of cmap. If None, value.max() is used. Defaults to None. cmap (str, optional): matplotlib colormap to use. Defaults to 'magma_r'. invalid_val (int, optional): Specifies value of invalid pixels that should be colored as 'background_color'. Defaults to -99. invalid_mask (numpy.ndarray, optional): Boolean mask for invalid regions. Defaults to None. background_color (tuple[int], optional): 4-tuple RGB color to give to invalid pixels. Defaults to (128, 128, 128, 255). gamma_corrected (bool, optional): Apply gamma correction to colored image. Defaults to False. value_transform (Callable, optional): Apply transform function to valid pixels before coloring. Defaults to None. Returns: numpy.ndarray, dtype - uint8: Colored depth map. Shape: (H, W, 4) """ if isinstance(value, torch.Tensor): value = value.detach().cpu().numpy() value = value.squeeze() if invalid_mask is None: invalid_mask = value == invalid_val mask = np.logical_not(invalid_mask) # normalize vmin = np.percentile(value[mask],2) if vmin is None else vmin vmax = np.percentile(value[mask],85) if vmax is None else vmax if vmin != vmax: value = (value - vmin) / (vmax - vmin) # vmin..vmax else: # Avoid 0-division value = value * 0. value[invalid_mask] = np.nan cmapper = matplotlib.cm.get_cmap(cmap) if value_transform: value = value_transform(value) # value = value / value.max() value = cmapper(value, bytes=True) # (nxmx4) # img = value[:, :, :] img = value[...] img[invalid_mask] = background_color if gamma_corrected: # gamma correction img = img / 255 img = np.power(img, 2.2) img = img * 255 img = img.astype(np.uint8) return img def denormalize(x): """Reverses the imagenet normalization applied to the input. Args: x (torch.Tensor - shape(N,3,H,W)): input tensor Returns: torch.Tensor - shape(N,3,H,W): Denormalized input """ mean = torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(x.device) std = torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(x.device) return x * std + mean