Spaces:
Running
Running
File size: 8,984 Bytes
860c6b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import argparse
import gradio
import torch
import torch.backends.cudnn as cudnn
from src.utils.vis import prob_to_mask
from src.lari.model import LaRIModel, DinoSegModel
from tools import load_model, process_image, post_process_output, get_masked_depth, save_to_glb, get_point_cloud, removebg_crop
from huggingface_hub import hf_hub_download
parser = argparse.ArgumentParser("Arguments for deploying a LaRI Demo")
parser.add_argument(
"--model_info_pm",
type=str,
default="LaRIModel(use_pretrained = 'moge_full', num_output_layer = 5, head_type = 'point')",
help="Network parameters to load the model",
)
parser.add_argument(
"--model_info_mask",
type=str,
default="DinoSegModel(use_pretrained = 'dinov2', dim_proj = 256, pretrained_path = '', num_output_layer = 4, output_type = 'ray_stop')",
help="Network parameters to load the model",
)
parser.add_argument(
"--ckpt_path_pm",
type=str,
default="lari_obj_16k_pointmap.pth",
help="Path to pre-trained weights",
)
parser.add_argument(
"--ckpt_path_mask",
type=str,
default="lari_obj_16k_seg.pth",
help="Path to pre-trained weights",
)
parser.add_argument(
"--resolution", type=int, default=512, help="Default model resolution"
)
args = parser.parse_args()
def model_forward(pil_input, layered_id, rembg_checkbox):
"""
Perform LaRI estimation by:
1. image processing
2. network forward
3. save masked layered depth image
4. save point cloud
"""
if pil_input is None:
return (None, None, None, None, None, None)
if rembg_checkbox:
pil_input = removebg_crop(pil_input)
# Process the input image.
input_tensor, ori_img_tensor, crop_coords, original_size = process_image(
pil_input, resolution=512
)
input_tensor = input_tensor.to(device)
# Run inference.
with torch.no_grad():
# lari map
pred_dict = model_pm(input_tensor)
lari_map = -pred_dict["pts3d"].squeeze(
0
) # Expected output shape: (H_reso, W_reso, L, 3)
# mask
if model_mask:
pred_dict = model_mask(input_tensor)
assert "seg_prob" in pred_dict
valid_mask = prob_to_mask(pred_dict["seg_prob"].squeeze(0)) # H W L 1
else:
h, w, l, _ = lari_map.shape
valid_mask = torch.new_ones((h, w, l, 1), device=lari_map.device)
# crop & resize the output to the original resolution.
if original_size[0] != args.resolution or original_size[1] != args.resolution:
lari_map = post_process_output(lari_map, crop_coords, original_size) # H W L 3
valid_mask = post_process_output(
valid_mask.float(), crop_coords, original_size
).bool() # H W L 1
max_n_layer = min(valid_mask.shape[-2], lari_map.shape[-2])
valid_mask = valid_mask[:, :, :max_n_layer, :]
lari_map = lari_map[:, :, :max_n_layer, :]
curr_layer_id = min(max_n_layer - 1, layered_id - 1)
# masked depth list
depth_image = get_masked_depth(
lari_map=lari_map, valid_mask=valid_mask, layer_id=curr_layer_id
)
# point cloud
glb_path, ply_path = get_point_cloud(
lari_map, ori_img_tensor, valid_mask, first_layer_color="pseudo"
)
return (
depth_image,
glb_path,
lari_map,
valid_mask,
0,
max_n_layer - 1,
glb_path,
ply_path,
pil_input,
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
cudnn.benchmark = True
# Download the file
model_path_pm = hf_hub_download(repo_id="ruili3/LaRI", filename=args.ckpt_path_pm, repo_type="model")
model_path_mask = hf_hub_download(repo_id="ruili3/LaRI", filename=args.ckpt_path_mask, repo_type="model")
# Load the model with pretrained weights.
model_pm = load_model(args.model_info_pm, model_path_pm, device)
model_mask = (
load_model(args.model_info_mask, model_path_mask, device)
if args.model_info_mask is not None
else None
)
def change_layer(slider_layer_id, lari_map, valid_mask, min_layer_id, max_layer_id):
if lari_map is None:
return
slider_layer_id = slider_layer_id - 1
curr_layer_id = min(slider_layer_id, max_layer_id)
curr_layer_id = max(curr_layer_id, min_layer_id)
# masked depth list
depth_image = get_masked_depth(
lari_map=lari_map, valid_mask=valid_mask, layer_id=curr_layer_id
)
return depth_image
def clear_everything():
return (
gradio.update(value=None),
gradio.update(value=None),
gradio.update(value=None),
gradio.update(value=None),
gradio.update(value=None),
gradio.update(value=None),
gradio.update(value=None),
)
with gradio.Blocks(
css=""".gradio-container {margin: 0 !important; min-width: 100%};""",
title="LaRI Demo",
) as demo:
gradio.Markdown(
"<h1 style='text-align: center;'>LaRI: Layered Ray Intersections for Single-view 3D Geometric Reasoning</h1>",
elem_id="title",
)
gradio.Markdown(
"""
This is the official demo of Layered Ray Intersection (<a href="https://ruili3.github.io/lari/index.html" target="_blank" style="color: #2a9d8f;">LaRI</a>). For a quick start, click the images in 'Examples' and then click the 'Process' Button.
You can try with your own images with following steps:
- Load an image;
- Click the 'Process' button;
- Browse layered depth maps (z-channel of the resulting LaRI point map) by tunning 'Layer ID';
Note that in '3D Point Cloud', different color denotes diffrent intersection layers, i.e., <b style="color: #FFBD1C;">layer 1</b>, <b style="color: #FB5607;">layer 2</b>, <b style="color: #F15BB5;">layer 3</b>, <b style="color: #8338EC;">layer 4</b>.
"""
)
# , <b style="color: #3A86FF;">layer 5</b>.
lari_map = gradio.State(None)
valid_mask = gradio.State(None)
min_layer_id = gradio.State(None)
max_layer_id = gradio.State(None)
with gradio.Column():
with gradio.Row(equal_height=True):
with gradio.Column(scale=1):
image_input = gradio.Image(
label="Upload an Image", type="pil", height=350
)
with gradio.Row():
rembg_checkbox = gradio.Checkbox(label="Remove background")
clear_button = gradio.Button("Clear")
submit_btn = gradio.Button("Process")
with gradio.Column(scale=1):
depth_output = gradio.Image(
label="LaRI Map at Z-axis (depth)",
type="pil",
interactive=False,
height=300,
)
slider_layer_id = gradio.Slider(
minimum=1,
maximum=4,
step=1,
value=1,
label="Layer ID",
interactive=True,
)
with gradio.Row(scale=1):
outmodel = gradio.Model3D(
label="3D Point Cloud (Color denotes different layers)",
interactive=False,
zoom_speed=0.5,
pan_speed=0.5,
height=450,
)
with gradio.Row():
ply_file_output = gradio.File(label="ply output", elem_classes="small-file")
glb_file_output = gradio.File(label="glb output", elem_classes="small-file")
submit_btn.click(
fn=model_forward,
inputs=[image_input, slider_layer_id, rembg_checkbox],
outputs=[
depth_output,
outmodel,
lari_map,
valid_mask,
min_layer_id,
max_layer_id,
glb_file_output,
ply_file_output,
image_input,
],
)
clear_button.click(
fn=clear_everything,
outputs=[
lari_map,
valid_mask,
min_layer_id,
max_layer_id,
image_input,
depth_output,
outmodel,
],
)
slider_layer_id.change(
fn=change_layer,
inputs=[slider_layer_id, lari_map, valid_mask, min_layer_id, max_layer_id],
outputs=depth_output,
)
gradio.Examples(examples=["assets/cole_hardware.png",
"assets/3m_tape.png",
"assets/horse.png",
"assets/rhino.png",
"assets/alphabet.png",
"assets/martin_wedge.png",
"assets/d_rose.png",
"assets/ace.png",
"assets/bifidus.png",
"assets/fem.png",
],
inputs=image_input)
demo.launch(share=False)
|