Spaces:
Running
Running
File size: 11,331 Bytes
860c6b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
import argparse
import os
import torch
import numpy as np
import trimesh
from scipy.spatial.transform import Rotation
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
from PIL import Image
from src.utils.vis import (
prob_to_mask,
colorize,
denormalize,
)
import numpy as np
from src.lari.model import LaRIModel, DinoSegModel
from rembg import remove
from plyfile import PlyData, PlyElement
import torchvision.transforms as transforms
LAYER_COLOR = [
[255, 190, 11], # FFFF0B
[251, 86, 7], # FB5607
[241, 91, 181], # F15BB5
[131, 56, 236], # 8338EC
[58, 134, 255], # 3A86FF
]
OPENGL = np.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])
def save_point_cloud(pcd, rgb, filename, binary=True):
"""Save an RGB point cloud as a PLY file.
:paras
@pcd: Nx3 matrix, the XYZ coordinates
@rgb: Nx3 matrix, the rgb colors for each 3D point
"""
if rgb is None:
gray_concat = np.tile(np.array([128], dtype=np.uint8),
(pcd.shape[0], 3))
points_3d = np.hstack((pcd, gray_concat))
else:
assert pcd.shape[0] == rgb.shape[0]
points_3d = np.hstack((pcd, rgb))
python_types = (float, float, float, int, int, int)
npy_types = [('x', 'f4'), ('y', 'f4'), ('z', 'f4'), ('red', 'u1'),
('green', 'u1'), ('blue', 'u1')]
if binary is True:
# Format into Numpy structured array
vertices = []
for row_idx in range(points_3d.shape[0]):
cur_point = points_3d[row_idx]
vertices.append(
tuple(
dtype(point)
for dtype, point in zip(python_types, cur_point)))
vertices_array = np.array(vertices, dtype=npy_types)
el = PlyElement.describe(vertices_array, 'vertex')
# write
PlyData([el]).write(filename)
else:
x = np.squeeze(points_3d[:, 0])
y = np.squeeze(points_3d[:, 1])
z = np.squeeze(points_3d[:, 2])
r = np.squeeze(points_3d[:, 3])
g = np.squeeze(points_3d[:, 4])
b = np.squeeze(points_3d[:, 5])
ply_head = 'ply\n' \
'format ascii 1.0\n' \
'element vertex %d\n' \
'property float x\n' \
'property float y\n' \
'property float z\n' \
'property uchar red\n' \
'property uchar green\n' \
'property uchar blue\n' \
'end_header' % r.shape[0]
# ---- Save ply data to disk
np.savetxt(filename, np.column_stack[x, y, z, r, g, b], fmt='%f %f %f %d %d %d', header=ply_head, comments='')
def load_model(model_info, ckpt_path, device):
model = eval(model_info)
model.to(device)
model.eval()
# Load pretrained weights
ckpt = torch.load(ckpt_path, map_location=device, weights_only=False)
if "model" in ckpt:
model.load_state_dict(ckpt["model"], strict=False)
else:
model.load_state_dict(ckpt, strict=False)
return model
def process_image_custom(pil_image, resolution=512):
"""
Read an image, resize the long side to `resolution` and pad the short side with gray,
so that the final image is (resolution x resolution).
Returns:
padded_img (PIL.Image): The processed image.
crop_coords (tuple): (top, left, bottom, right) coordinates of the valid region.
original_size (tuple): (width, height) of the original image.
"""
pil_image = pil_image.convert("RGB")
original_width, original_height = pil_image.size
# If already at fixed resolution, no processing is needed.
if original_width == resolution and original_height == resolution:
crop_coords = (0, 0, resolution, resolution)
return pil_image, crop_coords, (original_width, original_height), pil_image
# Compute scaling factor based on the long side.
if original_width >= original_height:
# Width is the long side.
scale = resolution / float(original_width)
new_width = resolution
new_height = int(round(original_height * scale))
resized_img = pil_image.resize((new_width, new_height), Image.BILINEAR)
# Compute vertical padding.
pad_top = (resolution - new_height) // 2
pad_bottom = resolution - new_height - pad_top
pad_left, pad_right = 0, 0
else:
# Height is the long side.
scale = resolution / float(original_height)
new_height = resolution
new_width = int(round(original_width * scale))
resized_img = pil_image.resize((new_width, new_height), Image.BILINEAR)
# Compute horizontal padding.
pad_left = (resolution - new_width) // 2
pad_right = resolution - new_width - pad_left
pad_top, pad_bottom = 0, 0
# Create new image filled with black
padded_img = Image.new("RGB", (resolution, resolution), (0, 0, 0))
padded_img.paste(resized_img, (pad_left, pad_top))
# The valid region (crop) is where the resized image was pasted.
crop_coords = (pad_top, pad_left, pad_top + new_height, pad_left + new_width)
return padded_img, crop_coords, (original_width, original_height), pil_image
def process_image(pil_image, resolution=512):
"""
Process the image: apply custom resize/pad then convert to normalized tensor.
Returns:
img_tensor (torch.Tensor): Tensor of shape (1, 3, resolution, resolution).
crop_coords (tuple): (top, left, bottom, right) coordinates of the valid region.
original_size (tuple): (width, height) of the original image.
"""
padded_img, crop_coords, original_size, ori_img = process_image_custom(
pil_image, resolution
)
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
img_tensor = transform(padded_img).unsqueeze(0)
ori_img_tensor = transform(ori_img).unsqueeze(0)
return img_tensor, ori_img_tensor, crop_coords, original_size
def post_process_output(input_tensor, crop_coords, original_size):
"""
Crop the input tensor using the crop_coords and then resize to the original image size.
Args:
input_tensor (torch.Tensor): Input with shape (H, W, L, C) where C is 1 or 3.
crop_coords (tuple): (top, left, bottom, right) coordinates for cropping.
original_size (tuple): (width, height) of the original image.
Returns:
processed_output (torch.Tensor): Output with shape (original_height, original_width, L, C).
"""
top, left, bottom, right = crop_coords
# Crop the input spatially: resulting shape (crop_h, crop_w, L, C)
cropped = input_tensor[top:bottom, left:right, ...]
crop_h, crop_w, L, C = cropped.shape
# New shape becomes (1, L * C, crop_h, crop_w)
reshaped = cropped.permute(2, 3, 0, 1).reshape(1, L * C, crop_h, crop_w)
# Unpack the original size (width, height) and use bilinear interpolation.
new_width, new_height = original_size
mode = "nearest" if L == 1 else "bilinear"
resized = F.interpolate(
reshaped, size=(new_height, new_width), mode=mode, align_corners=False
)
resized = resized.reshape(L, C, new_height, new_width)
# Permute to the output shape: (new_height, new_width, L, C)
processed_output = resized.permute(2, 3, 0, 1)
return processed_output
def get_masked_depth(lari_map, valid_mask, layer_id):
layer_id = max(0, layer_id)
lari_depth = lari_map[:, :, layer_id, 2].cpu().numpy() # H W
valid_mask = valid_mask[:, :, layer_id, 0].cpu().numpy() # H W
valid_values = lari_depth[valid_mask]
# Handle empty valid values
if valid_values.size == 0:
vis_depth_range = [0, 1]
else:
vis_depth_range = [valid_values.min(), valid_values.max()]
depth_image = Image.fromarray(
colorize(
lari_depth,
vis_depth_range[0],
vis_depth_range[1],
invalid_mask=~valid_mask,
cmap="Spectral",
)
).convert("RGB")
return depth_image
def save_to_glb(pts3d, color3d, path):
scene = trimesh.Scene()
pct = trimesh.PointCloud(pts3d, colors=color3d)
scene.add_geometry(pct)
rot_y = np.eye(4)
rot_y[:3, :3] = Rotation.from_euler("y", np.deg2rad(180)).as_matrix()
scene.apply_transform(np.linalg.inv(OPENGL @ rot_y))
outfile = os.path.join(path, "res.glb")
scene.export(file_obj=outfile)
return outfile
def get_point_cloud(pred, img, mask, first_layer_color="image", target_folder=None):
"""
pred h w l 3 - the point cloud
img: 3 h w - the colored image
mask: h w l - indicating the valid layers
n_samples: int - n of pts to sample and save
"""
ori_shape = pred.shape
pred = pred.cpu().numpy()
pred = pred.reshape(-1, 3) # M 3
color_palette = LAYER_COLOR[: min(len(LAYER_COLOR), ori_shape[-2])]
assert first_layer_color in ["image", "pseudo"]
# assign color to point clouds: [M,3] -> [M, 6]
img = torch.clip(denormalize(img).squeeze(0), 0.0, 1.0)
img = img.permute(1, 2, 0).unsqueeze(2).cpu().numpy() # H W 1 3
img = (img * 255.0).astype(np.uint8)
layered_color = np.array([[color_palette]]).astype(np.uint8) # 1 1 n_layer 3
layered_color = np.broadcast_to(
layered_color, (img.shape[0], img.shape[1], ori_shape[2], 3)
) # H W n_layer 3
if first_layer_color == "image":
layered_color[:, :, :1, :] = img
layered_color = layered_color.reshape(-1, 3)
valid_mask_arr = mask.squeeze().reshape(-1).cpu().numpy() # [H,W,layers] -> [M]
pred = pred[valid_mask_arr.astype(bool)]
layered_color = layered_color[valid_mask_arr.astype(bool)] # V,3
save_folder = target_folder if target_folder is not None else os.path.dirname(__file__)
ply_path = os.path.join(save_folder, "res.ply")
save_point_cloud(pred, layered_color, filename=ply_path)
glb_path = save_to_glb(pred, layered_color, save_folder)
return glb_path, ply_path
def removebg_crop(pil_input):
pil_input = remove(pil_input.convert("RGB"))
pil_np = np.array(pil_input)
alpha = pil_np[:, :, 3]
is_crop = (
False
if np.sum(alpha > 0.8 * 255) > 0.1 * (alpha.shape[0] * alpha.shape[1])
else True
)
# adjust object size to fit the image resolution
if is_crop:
width, height = pil_input.size
# adjust object size
output_np = np.array(pil_input)
alpha = output_np[:, :, 3]
bbox = np.argwhere(alpha > 0.8 * 255)
bbox = (
np.min(bbox[:, 1]),
np.min(bbox[:, 0]),
np.max(bbox[:, 1]),
np.max(bbox[:, 0]),
)
center = (bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2
size = max(bbox[2] - bbox[0], bbox[3] - bbox[1])
size = int(size * 1.5)
bbox = (
max(center[0] - size // 2, 0),
max(center[1] - size // 2, 0),
min(center[0] + size // 2, width),
min(center[1] + size // 2, height),
)
pil_input = pil_input.crop(bbox) # type: ignore
return pil_input |