Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import json | |
| import yaml | |
| import torchvision | |
| from torch import nn, optim | |
| from transformers import AutoTokenizer, CLIPTextModelWithProjection, CLIPVisionModelWithProjection | |
| from warmup_scheduler import GradualWarmupScheduler | |
| import torch.multiprocessing as mp | |
| import os | |
| import numpy as np | |
| import re | |
| import sys | |
| sys.path.append(os.path.abspath('./')) | |
| from dataclasses import dataclass | |
| from torch.distributed import init_process_group, destroy_process_group, barrier | |
| from gdf import GDF_dual_fixlrt as GDF | |
| from gdf import EpsilonTarget, CosineSchedule | |
| from gdf import VPScaler, CosineTNoiseCond, DDPMSampler, P2LossWeight, AdaptiveLossWeight | |
| from torchtools.transforms import SmartCrop | |
| from fractions import Fraction | |
| from modules.effnet import EfficientNetEncoder | |
| from modules.model_4stage_lite import StageC, ResBlock, AttnBlock, TimestepBlock, FeedForwardBlock | |
| from modules.common_ckpt import GlobalResponseNorm | |
| from modules.previewer import Previewer | |
| from core.data import Bucketeer | |
| from train.base import DataCore, TrainingCore | |
| from tqdm import tqdm | |
| from core import WarpCore | |
| from core.utils import EXPECTED, EXPECTED_TRAIN, load_or_fail | |
| from accelerate import init_empty_weights | |
| from accelerate.utils import set_module_tensor_to_device | |
| from contextlib import contextmanager | |
| from train.dist_core import * | |
| import glob | |
| from torch.utils.data import DataLoader, Dataset | |
| from torch.nn.parallel import DistributedDataParallel as DDP | |
| from torch.utils.data.distributed import DistributedSampler | |
| from PIL import Image | |
| from core.utils import EXPECTED, EXPECTED_TRAIN, update_weights_ema, create_folder_if_necessary | |
| from core.utils import Base | |
| import torch.nn.functional as F | |
| import functools | |
| import math | |
| import copy | |
| import random | |
| from modules.lora import apply_lora, apply_retoken, LoRA, ReToken | |
| Image.MAX_IMAGE_PIXELS = None | |
| torch.manual_seed(23) | |
| random.seed(23) | |
| np.random.seed(23) | |
| #7978026 | |
| class Null_Model(torch.nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| def forward(self, x): | |
| pass | |
| def identity(x): | |
| if isinstance(x, bytes): | |
| x = x.decode('utf-8') | |
| return x | |
| def check_nan_inmodel(model, meta=''): | |
| for name, param in model.named_parameters(): | |
| if torch.isnan(param).any(): | |
| print(f"nan detected in {name}", meta) | |
| return True | |
| print('no nan', meta) | |
| return False | |
| class mydist_dataset(Dataset): | |
| def __init__(self, rootpath, tmp_prompt, img_processor=None): | |
| self.img_pathlist = glob.glob(os.path.join(rootpath, '*.jpg')) | |
| self.img_pathlist = self.img_pathlist * 100000 | |
| self.img_processor = img_processor | |
| self.length = len( self.img_pathlist) | |
| self.caption = tmp_prompt | |
| def __getitem__(self, idx): | |
| imgpath = self.img_pathlist[idx] | |
| txt = self.caption | |
| try: | |
| img = Image.open(imgpath).convert('RGB') | |
| w, h = img.size | |
| if self.img_processor is not None: | |
| img = self.img_processor(img) | |
| except: | |
| print('exception', imgpath) | |
| return self.__getitem__(random.randint(0, self.length -1 ) ) | |
| return dict(captions=txt, images=img) | |
| def __len__(self): | |
| return self.length | |
| class WurstCore(TrainingCore, DataCore, WarpCore): | |
| class Config(TrainingCore.Config, DataCore.Config, WarpCore.Config): | |
| # TRAINING PARAMS | |
| lr: float = EXPECTED_TRAIN | |
| warmup_updates: int = EXPECTED_TRAIN | |
| dtype: str = None | |
| # MODEL VERSION | |
| model_version: str = EXPECTED # 3.6B or 1B | |
| clip_image_model_name: str = 'openai/clip-vit-large-patch14' | |
| clip_text_model_name: str = 'laion/CLIP-ViT-bigG-14-laion2B-39B-b160k' | |
| # CHECKPOINT PATHS | |
| effnet_checkpoint_path: str = EXPECTED | |
| previewer_checkpoint_path: str = EXPECTED | |
| generator_checkpoint_path: str = None | |
| ultrapixel_path: str = EXPECTED | |
| # gdf customization | |
| adaptive_loss_weight: str = None | |
| # LoRA STUFF | |
| module_filters: list = EXPECTED | |
| rank: int = EXPECTED | |
| train_tokens: list = EXPECTED | |
| use_ddp: bool=EXPECTED | |
| tmp_prompt: str=EXPECTED | |
| class Data(Base): | |
| dataset: Dataset = EXPECTED | |
| dataloader: DataLoader = EXPECTED | |
| iterator: any = EXPECTED | |
| sampler: DistributedSampler = EXPECTED | |
| class Models(TrainingCore.Models, DataCore.Models, WarpCore.Models): | |
| effnet: nn.Module = EXPECTED | |
| previewer: nn.Module = EXPECTED | |
| train_norm: nn.Module = EXPECTED | |
| train_lora: nn.Module = EXPECTED | |
| class Schedulers(WarpCore.Schedulers): | |
| generator: any = None | |
| class Extras(TrainingCore.Extras, DataCore.Extras, WarpCore.Extras): | |
| gdf: GDF = EXPECTED | |
| sampling_configs: dict = EXPECTED | |
| effnet_preprocess: torchvision.transforms.Compose = EXPECTED | |
| info: TrainingCore.Info | |
| config: Config | |
| def setup_extras_pre(self) -> Extras: | |
| gdf = GDF( | |
| schedule=CosineSchedule(clamp_range=[0.0001, 0.9999]), | |
| input_scaler=VPScaler(), target=EpsilonTarget(), | |
| noise_cond=CosineTNoiseCond(), | |
| loss_weight=AdaptiveLossWeight() if self.config.adaptive_loss_weight is True else P2LossWeight(), | |
| ) | |
| sampling_configs = {"cfg": 5, "sampler": DDPMSampler(gdf), "shift": 1, "timesteps": 20} | |
| if self.info.adaptive_loss is not None: | |
| gdf.loss_weight.bucket_ranges = torch.tensor(self.info.adaptive_loss['bucket_ranges']) | |
| gdf.loss_weight.bucket_losses = torch.tensor(self.info.adaptive_loss['bucket_losses']) | |
| effnet_preprocess = torchvision.transforms.Compose([ | |
| torchvision.transforms.Normalize( | |
| mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225) | |
| ) | |
| ]) | |
| clip_preprocess = torchvision.transforms.Compose([ | |
| torchvision.transforms.Resize(224, interpolation=torchvision.transforms.InterpolationMode.BICUBIC), | |
| torchvision.transforms.CenterCrop(224), | |
| torchvision.transforms.Normalize( | |
| mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711) | |
| ) | |
| ]) | |
| if self.config.training: | |
| transforms = torchvision.transforms.Compose([ | |
| torchvision.transforms.ToTensor(), | |
| torchvision.transforms.Resize(self.config.image_size[-1], interpolation=torchvision.transforms.InterpolationMode.BILINEAR, antialias=True), | |
| SmartCrop(self.config.image_size, randomize_p=0.3, randomize_q=0.2) | |
| ]) | |
| else: | |
| transforms = None | |
| return self.Extras( | |
| gdf=gdf, | |
| sampling_configs=sampling_configs, | |
| transforms=transforms, | |
| effnet_preprocess=effnet_preprocess, | |
| clip_preprocess=clip_preprocess | |
| ) | |
| def get_conditions(self, batch: dict, models: Models, extras: Extras, is_eval=False, is_unconditional=False, | |
| eval_image_embeds=False, return_fields=None): | |
| conditions = super().get_conditions( | |
| batch, models, extras, is_eval, is_unconditional, | |
| eval_image_embeds, return_fields=return_fields or ['clip_text', 'clip_text_pooled', 'clip_img'] | |
| ) | |
| return conditions | |
| def setup_models(self, extras: Extras) -> Models: # configure model | |
| dtype = getattr(torch, self.config.dtype) if self.config.dtype else torch.bfloat16 | |
| # EfficientNet encoderin | |
| effnet = EfficientNetEncoder() | |
| effnet_checkpoint = load_or_fail(self.config.effnet_checkpoint_path) | |
| effnet.load_state_dict(effnet_checkpoint if 'state_dict' not in effnet_checkpoint else effnet_checkpoint['state_dict']) | |
| effnet.eval().requires_grad_(False).to(self.device) | |
| del effnet_checkpoint | |
| # Previewer | |
| previewer = Previewer() | |
| previewer_checkpoint = load_or_fail(self.config.previewer_checkpoint_path) | |
| previewer.load_state_dict(previewer_checkpoint if 'state_dict' not in previewer_checkpoint else previewer_checkpoint['state_dict']) | |
| previewer.eval().requires_grad_(False).to(self.device) | |
| del previewer_checkpoint | |
| def dummy_context(): | |
| yield None | |
| loading_context = dummy_context if self.config.training else init_empty_weights | |
| # Diffusion models | |
| with loading_context(): | |
| generator_ema = None | |
| if self.config.model_version == '3.6B': | |
| generator = StageC() | |
| if self.config.ema_start_iters is not None: # default setting | |
| generator_ema = StageC() | |
| elif self.config.model_version == '1B': | |
| print('in line 155 1b light model', self.config.model_version ) | |
| generator = StageC(c_cond=1536, c_hidden=[1536, 1536], nhead=[24, 24], blocks=[[4, 12], [12, 4]]) | |
| if self.config.ema_start_iters is not None and self.config.training: | |
| generator_ema = StageC(c_cond=1536, c_hidden=[1536, 1536], nhead=[24, 24], blocks=[[4, 12], [12, 4]]) | |
| else: | |
| raise ValueError(f"Unknown model version {self.config.model_version}") | |
| if loading_context is dummy_context: | |
| generator.load_state_dict( load_or_fail(self.config.generator_checkpoint_path)) | |
| else: | |
| for param_name, param in load_or_fail(self.config.generator_checkpoint_path).items(): | |
| set_module_tensor_to_device(generator, param_name, "cpu", value=param) | |
| generator._init_extra_parameter() | |
| generator = generator.to(torch.bfloat16).to(self.device) | |
| train_norm = nn.ModuleList() | |
| cnt_norm = 0 | |
| for mm in generator.modules(): | |
| if isinstance(mm, GlobalResponseNorm): | |
| train_norm.append(Null_Model()) | |
| cnt_norm += 1 | |
| train_norm.append(generator.agg_net) | |
| train_norm.append(generator.agg_net_up) | |
| sdd = torch.load(self.config.ultrapixel_path, map_location='cpu') | |
| collect_sd = {} | |
| for k, v in sdd.items(): | |
| collect_sd[k[7:]] = v | |
| train_norm.load_state_dict(collect_sd) | |
| # CLIP encoders | |
| tokenizer = AutoTokenizer.from_pretrained(self.config.clip_text_model_name) | |
| text_model = CLIPTextModelWithProjection.from_pretrained( self.config.clip_text_model_name).requires_grad_(False).to(dtype).to(self.device) | |
| image_model = CLIPVisionModelWithProjection.from_pretrained(self.config.clip_image_model_name).requires_grad_(False).to(dtype).to(self.device) | |
| # PREPARE LORA | |
| train_lora = nn.ModuleList() | |
| update_tokens = [] | |
| for tkn_regex, aggr_regex in self.config.train_tokens: | |
| if (tkn_regex.startswith('[') and tkn_regex.endswith(']')) or (tkn_regex.startswith('<') and tkn_regex.endswith('>')): | |
| # Insert new token | |
| tokenizer.add_tokens([tkn_regex]) | |
| # add new zeros embedding | |
| new_embedding = torch.zeros_like(text_model.text_model.embeddings.token_embedding.weight.data)[:1] | |
| if aggr_regex is not None: # aggregate embeddings to provide an interesting baseline | |
| aggr_tokens = [v for k, v in tokenizer.vocab.items() if re.search(aggr_regex, k) is not None] | |
| if len(aggr_tokens) > 0: | |
| new_embedding = text_model.text_model.embeddings.token_embedding.weight.data[aggr_tokens].mean(dim=0, keepdim=True) | |
| elif self.is_main_node: | |
| print(f"WARNING: No tokens found for aggregation regex {aggr_regex}. It will be initialized as zeros.") | |
| text_model.text_model.embeddings.token_embedding.weight.data = torch.cat([ | |
| text_model.text_model.embeddings.token_embedding.weight.data, new_embedding | |
| ], dim=0) | |
| selected_tokens = [len(tokenizer.vocab) - 1] | |
| else: | |
| selected_tokens = [v for k, v in tokenizer.vocab.items() if re.search(tkn_regex, k) is not None] | |
| update_tokens += selected_tokens | |
| update_tokens = list(set(update_tokens)) # remove duplicates | |
| apply_retoken(text_model.text_model.embeddings.token_embedding, update_tokens) | |
| apply_lora(generator, filters=self.config.module_filters, rank=self.config.rank) | |
| for module in generator.modules(): | |
| if isinstance(module, LoRA) or (hasattr(module, '_fsdp_wrapped_module') and isinstance(module._fsdp_wrapped_module, LoRA)): | |
| train_lora.append(module) | |
| train_lora.append(text_model.text_model.embeddings.token_embedding.parametrizations.weight[0]) | |
| if os.path.exists(os.path.join(self.config.output_path, self.config.experiment_id, 'train_lora.safetensors')): | |
| sdd = torch.load(os.path.join(self.config.output_path, self.config.experiment_id, 'train_lora.safetensors'), map_location='cpu') | |
| collect_sd = {} | |
| for k, v in sdd.items(): | |
| collect_sd[k[7:]] = v | |
| train_lora.load_state_dict(collect_sd, strict=True) | |
| train_norm.to(self.device).train().requires_grad_(True) | |
| if generator_ema is not None: | |
| generator_ema.load_state_dict(load_or_fail(self.config.generator_checkpoint_path)) | |
| generator_ema._init_extra_parameter() | |
| pretrained_pth = os.path.join(self.config.output_path, self.config.experiment_id, 'generator.safetensors') | |
| if os.path.exists(pretrained_pth): | |
| generator_ema.load_state_dict(torch.load(pretrained_pth, map_location='cpu')) | |
| generator_ema.eval().requires_grad_(False) | |
| check_nan_inmodel(generator, 'generator') | |
| if self.config.use_ddp and self.config.training: | |
| train_lora = DDP(train_lora, device_ids=[self.device], find_unused_parameters=True) | |
| return self.Models( | |
| effnet=effnet, previewer=previewer, train_norm = train_norm, | |
| generator=generator, generator_ema=generator_ema, | |
| tokenizer=tokenizer, text_model=text_model, image_model=image_model, | |
| train_lora=train_lora | |
| ) | |
| def setup_optimizers(self, extras: Extras, models: Models) -> TrainingCore.Optimizers: | |
| params = [] | |
| params += list(models.train_lora.module.parameters()) | |
| optimizer = optim.AdamW(params, lr=self.config.lr) | |
| return self.Optimizers(generator=optimizer) | |
| def ema_update(self, ema_model, source_model, beta): | |
| for param_src, param_ema in zip(source_model.parameters(), ema_model.parameters()): | |
| param_ema.data.mul_(beta).add_(param_src.data, alpha = 1 - beta) | |
| def sync_ema(self, ema_model): | |
| print('sync ema', torch.distributed.get_world_size()) | |
| for param in ema_model.parameters(): | |
| torch.distributed.all_reduce(param.data, op=torch.distributed.ReduceOp.SUM) | |
| param.data /= torch.distributed.get_world_size() | |
| def setup_optimizers_backup(self, extras: Extras, models: Models) -> TrainingCore.Optimizers: | |
| optimizer = optim.AdamW( | |
| models.generator.up_blocks.parameters() , | |
| lr=self.config.lr) | |
| optimizer = self.load_optimizer(optimizer, 'generator_optim', | |
| fsdp_model=models.generator if self.config.use_fsdp else None) | |
| return self.Optimizers(generator=optimizer) | |
| def setup_schedulers(self, extras: Extras, models: Models, optimizers: TrainingCore.Optimizers) -> Schedulers: | |
| scheduler = GradualWarmupScheduler(optimizers.generator, multiplier=1, total_epoch=self.config.warmup_updates) | |
| scheduler.last_epoch = self.info.total_steps | |
| return self.Schedulers(generator=scheduler) | |
| def setup_data(self, extras: Extras) -> WarpCore.Data: | |
| # SETUP DATASET | |
| dataset_path = self.config.webdataset_path | |
| dataset = mydist_dataset(dataset_path, self.config.tmp_prompt, \ | |
| torchvision.transforms.ToTensor() if self.config.multi_aspect_ratio is not None \ | |
| else extras.transforms) | |
| # SETUP DATALOADER | |
| real_batch_size = self.config.batch_size // (self.world_size * self.config.grad_accum_steps) | |
| sampler = DistributedSampler(dataset, rank=self.process_id, num_replicas = self.world_size, shuffle=True) | |
| dataloader = DataLoader( | |
| dataset, batch_size=real_batch_size, num_workers=4, pin_memory=True, | |
| collate_fn=identity if self.config.multi_aspect_ratio is not None else None, | |
| sampler = sampler | |
| ) | |
| if self.is_main_node: | |
| print(f"Training with batch size {self.config.batch_size} ({real_batch_size}/GPU)") | |
| if self.config.multi_aspect_ratio is not None: | |
| aspect_ratios = [float(Fraction(f)) for f in self.config.multi_aspect_ratio] | |
| dataloader_iterator = Bucketeer(dataloader, density=[ss*ss for ss in self.config.image_size] , factor=32, | |
| ratios=aspect_ratios, p_random_ratio=self.config.bucketeer_random_ratio, | |
| interpolate_nearest=False) # , use_smartcrop=True) | |
| else: | |
| dataloader_iterator = iter(dataloader) | |
| return self.Data(dataset=dataset, dataloader=dataloader, iterator=dataloader_iterator, sampler=sampler) | |
| def setup_ddp(self, experiment_id, single_gpu=False, rank=0): | |
| if not single_gpu: | |
| local_rank = rank | |
| process_id = rank | |
| world_size = get_world_size() | |
| self.process_id = process_id | |
| self.is_main_node = process_id == 0 | |
| self.device = torch.device(local_rank) | |
| self.world_size = world_size | |
| os.environ['MASTER_ADDR'] = 'localhost' | |
| os.environ['MASTER_PORT'] = '14443' | |
| torch.cuda.set_device(local_rank) | |
| init_process_group( | |
| backend="nccl", | |
| rank=local_rank, | |
| world_size=world_size, | |
| # init_method=init_method, | |
| ) | |
| print(f"[GPU {process_id}] READY") | |
| else: | |
| self.is_main_node = rank == 0 | |
| self.process_id = rank | |
| self.device = torch.device('cuda:0') | |
| self.world_size = 1 | |
| print("Running in single thread, DDP not enabled.") | |
| # Training loop -------------------------------- | |
| def get_target_lr_size(self, ratio, std_size=24): | |
| w, h = int(std_size / math.sqrt(ratio)), int(std_size * math.sqrt(ratio)) | |
| return (h * 32 , w * 32) | |
| def forward_pass(self, data: WarpCore.Data, extras: Extras, models: Models): | |
| batch = data | |
| ratio = batch['images'].shape[-2] / batch['images'].shape[-1] | |
| shape_lr = self.get_target_lr_size(ratio) | |
| with torch.no_grad(): | |
| conditions = self.get_conditions(batch, models, extras) | |
| latents = self.encode_latents(batch, models, extras) | |
| latents_lr = self.encode_latents(batch, models, extras,target_size=shape_lr) | |
| flag_lr = random.random() < 0.5 or self.info.iter <5000 | |
| if flag_lr: | |
| noised, noise, target, logSNR, noise_cond, loss_weight = extras.gdf.diffuse(latents_lr, shift=1, loss_shift=1) | |
| else: | |
| noised, noise, target, logSNR, noise_cond, loss_weight = extras.gdf.diffuse(latents, shift=1, loss_shift=1) | |
| if not flag_lr: | |
| noised_lr, noise_lr, target_lr, logSNR_lr, noise_cond_lr, loss_weight_lr = \ | |
| extras.gdf.diffuse(latents_lr, shift=1, loss_shift=1, t=torch.ones(latents.shape[0]).to(latents.device)*0.05, ) | |
| with torch.cuda.amp.autocast(dtype=torch.bfloat16): | |
| if not flag_lr: | |
| with torch.no_grad(): | |
| _, lr_enc_guide, lr_dec_guide = models.generator(noised_lr, noise_cond_lr, reuire_f=True, **conditions) | |
| pred = models.generator(noised, noise_cond, reuire_f=False, lr_guide=(lr_enc_guide, lr_dec_guide) if not flag_lr else None , **conditions) | |
| loss = nn.functional.mse_loss(pred, target, reduction='none').mean(dim=[1, 2, 3]) | |
| loss_adjusted = (loss * loss_weight ).mean() / self.config.grad_accum_steps | |
| if isinstance(extras.gdf.loss_weight, AdaptiveLossWeight): | |
| extras.gdf.loss_weight.update_buckets(logSNR, loss) | |
| return loss, loss_adjusted | |
| def backward_pass(self, update, loss_adjusted, models: Models, optimizers: TrainingCore.Optimizers, schedulers: Schedulers): | |
| if update: | |
| torch.distributed.barrier() | |
| loss_adjusted.backward() | |
| grad_norm = nn.utils.clip_grad_norm_(models.train_lora.module.parameters(), 1.0) | |
| optimizers_dict = optimizers.to_dict() | |
| for k in optimizers_dict: | |
| if k != 'training': | |
| optimizers_dict[k].step() | |
| schedulers_dict = schedulers.to_dict() | |
| for k in schedulers_dict: | |
| if k != 'training': | |
| schedulers_dict[k].step() | |
| for k in optimizers_dict: | |
| if k != 'training': | |
| optimizers_dict[k].zero_grad(set_to_none=True) | |
| self.info.total_steps += 1 | |
| else: | |
| loss_adjusted.backward() | |
| grad_norm = torch.tensor(0.0).to(self.device) | |
| return grad_norm | |
| def models_to_save(self): | |
| return ['generator', 'generator_ema', 'trans_inr', 'trans_inr_ema'] | |
| def encode_latents(self, batch: dict, models: Models, extras: Extras, target_size=None) -> torch.Tensor: | |
| images = batch['images'].to(self.device) | |
| if target_size is not None: | |
| images = F.interpolate(images, target_size) | |
| return models.effnet(extras.effnet_preprocess(images)) | |
| def decode_latents(self, latents: torch.Tensor, batch: dict, models: Models, extras: Extras) -> torch.Tensor: | |
| return models.previewer(latents) | |
| def __init__(self, rank=0, config_file_path=None, config_dict=None, device="cpu", training=True, world_size=1, ): | |
| self.is_main_node = (rank == 0) | |
| self.config: self.Config = self.setup_config(config_file_path, config_dict, training) | |
| self.setup_ddp(self.config.experiment_id, single_gpu=world_size <= 1, rank=rank) | |
| self.info: self.Info = self.setup_info() | |
| print('in line 292', self.config.experiment_id, rank, world_size <= 1) | |
| p = [i for i in range( 2 * 768 // 32)] | |
| p = [num / sum(p) for num in p] | |
| self.rand_pro = p | |
| self.res_list = [o for o in range(800, 2336, 32)] | |
| def __call__(self, single_gpu=False): | |
| if self.config.allow_tf32: | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| torch.backends.cudnn.allow_tf32 = True | |
| if self.is_main_node: | |
| print() | |
| print("**STARTIG JOB WITH CONFIG:**") | |
| print(yaml.dump(self.config.to_dict(), default_flow_style=False)) | |
| print("------------------------------------") | |
| print() | |
| print("**INFO:**") | |
| print(yaml.dump(vars(self.info), default_flow_style=False)) | |
| print("------------------------------------") | |
| print() | |
| print('in line 308', self.is_main_node, self.is_main_node, self.process_id, self.device ) | |
| # SETUP STUFF | |
| extras = self.setup_extras_pre() | |
| assert extras is not None, "setup_extras_pre() must return a DTO" | |
| data = self.setup_data(extras) | |
| assert data is not None, "setup_data() must return a DTO" | |
| if self.is_main_node: | |
| print("**DATA:**") | |
| print(yaml.dump({k:type(v).__name__ for k, v in data.to_dict().items()}, default_flow_style=False)) | |
| print("------------------------------------") | |
| print() | |
| models = self.setup_models(extras) | |
| assert models is not None, "setup_models() must return a DTO" | |
| if self.is_main_node: | |
| print("**MODELS:**") | |
| print(yaml.dump({ | |
| k:f"{type(v).__name__} - {f'trainable params {sum(p.numel() for p in v.parameters() if p.requires_grad)}' if isinstance(v, nn.Module) else 'Not a nn.Module'}" for k, v in models.to_dict().items() | |
| }, default_flow_style=False)) | |
| print("------------------------------------") | |
| print() | |
| optimizers = self.setup_optimizers(extras, models) | |
| assert optimizers is not None, "setup_optimizers() must return a DTO" | |
| if self.is_main_node: | |
| print("**OPTIMIZERS:**") | |
| print(yaml.dump({k:type(v).__name__ for k, v in optimizers.to_dict().items()}, default_flow_style=False)) | |
| print("------------------------------------") | |
| print() | |
| schedulers = self.setup_schedulers(extras, models, optimizers) | |
| assert schedulers is not None, "setup_schedulers() must return a DTO" | |
| if self.is_main_node: | |
| print("**SCHEDULERS:**") | |
| print(yaml.dump({k:type(v).__name__ for k, v in schedulers.to_dict().items()}, default_flow_style=False)) | |
| print("------------------------------------") | |
| print() | |
| post_extras =self.setup_extras_post(extras, models, optimizers, schedulers) | |
| assert post_extras is not None, "setup_extras_post() must return a DTO" | |
| extras = self.Extras.from_dict({ **extras.to_dict(),**post_extras.to_dict() }) | |
| if self.is_main_node: | |
| print("**EXTRAS:**") | |
| print(yaml.dump({k:f"{v}" for k, v in extras.to_dict().items()}, default_flow_style=False)) | |
| print("------------------------------------") | |
| print() | |
| # ------- | |
| # TRAIN | |
| if self.is_main_node: | |
| print("**TRAINING STARTING...**") | |
| self.train(data, extras, models, optimizers, schedulers) | |
| if single_gpu is False: | |
| barrier() | |
| destroy_process_group() | |
| if self.is_main_node: | |
| print() | |
| print("------------------------------------") | |
| print() | |
| print("**TRAINING COMPLETE**") | |
| if self.config.wandb_project is not None: | |
| wandb.alert(title=f"Training {self.info.wandb_run_id} finished", text=f"Training {self.info.wandb_run_id} finished") | |
| def train(self, data: WarpCore.Data, extras: WarpCore.Extras, models: Models, optimizers: TrainingCore.Optimizers, | |
| schedulers: WarpCore.Schedulers): | |
| start_iter = self.info.iter + 1 | |
| max_iters = self.config.updates * self.config.grad_accum_steps | |
| if self.is_main_node: | |
| print(f"STARTING AT STEP: {start_iter}/{max_iters}") | |
| if self.is_main_node: | |
| create_folder_if_necessary(f'{self.config.output_path}/{self.config.experiment_id}/') | |
| if 'generator' in self.models_to_save(): | |
| models.generator.train() | |
| iter_cnt = 0 | |
| epoch_cnt = 0 | |
| models.train_norm.train() | |
| while True: | |
| epoch_cnt += 1 | |
| if self.world_size > 1: | |
| data.sampler.set_epoch(epoch_cnt) | |
| for ggg in range(len(data.dataloader)): | |
| iter_cnt += 1 | |
| # FORWARD PASS | |
| loss, loss_adjusted = self.forward_pass(next(data.iterator), extras, models) | |
| # # BACKWARD PASS | |
| grad_norm = self.backward_pass( | |
| iter_cnt % self.config.grad_accum_steps == 0 or iter_cnt == max_iters, loss_adjusted, | |
| models, optimizers, schedulers | |
| ) | |
| self.info.iter = iter_cnt | |
| self.info.ema_loss = loss.mean().item() if self.info.ema_loss is None else self.info.ema_loss * 0.99 + loss.mean().item() * 0.01 | |
| if self.is_main_node and np.isnan(loss.mean().item()) or np.isnan(grad_norm.item()): | |
| print(f"gggg NaN value encountered in training run {self.info.wandb_run_id}", \ | |
| f"Loss {loss.mean().item()} - Grad Norm {grad_norm.item()}. Run {self.info.wandb_run_id}") | |
| if self.is_main_node: | |
| logs = { | |
| 'loss': self.info.ema_loss, | |
| 'backward_loss': loss_adjusted.mean().item(), | |
| 'ema_loss': self.info.ema_loss, | |
| 'raw_ori_loss': loss.mean().item(), | |
| 'grad_norm': grad_norm.item(), | |
| 'lr': optimizers.generator.param_groups[0]['lr'] if optimizers.generator is not None else 0, | |
| 'total_steps': self.info.total_steps, | |
| } | |
| print(iter_cnt, max_iters, logs, epoch_cnt, ) | |
| if iter_cnt == 1 or iter_cnt % (self.config.save_every ) == 0 or iter_cnt == max_iters: | |
| if np.isnan(loss.mean().item()): | |
| if self.is_main_node and self.config.wandb_project is not None: | |
| print(f"NaN value encountered in training run {self.info.wandb_run_id}", \ | |
| f"Loss {loss.mean().item()} - Grad Norm {grad_norm.item()}. Run {self.info.wandb_run_id}") | |
| else: | |
| if isinstance(extras.gdf.loss_weight, AdaptiveLossWeight): | |
| self.info.adaptive_loss = { | |
| 'bucket_ranges': extras.gdf.loss_weight.bucket_ranges.tolist(), | |
| 'bucket_losses': extras.gdf.loss_weight.bucket_losses.tolist(), | |
| } | |
| if self.is_main_node and iter_cnt % (self.config.save_every * self.config.grad_accum_steps) == 0: | |
| print('save model', iter_cnt, iter_cnt % (self.config.save_every * self.config.grad_accum_steps), self.config.save_every, self.config.grad_accum_steps ) | |
| torch.save(models.train_lora.state_dict(), \ | |
| f'{self.config.output_path}/{self.config.experiment_id}/train_lora.safetensors') | |
| torch.save(models.train_lora.state_dict(), \ | |
| f'{self.config.output_path}/{self.config.experiment_id}/train_lora_{iter_cnt}.safetensors') | |
| if iter_cnt == 1 or iter_cnt % (self.config.save_every* self.config.grad_accum_steps) == 0 or iter_cnt == max_iters: | |
| if self.is_main_node: | |
| self.sample(models, data, extras) | |
| if False: | |
| param_changes = {name: (param - initial_params[name]).norm().item() for name, param in models.train_norm.named_parameters()} | |
| threshold = sorted(param_changes.values(), reverse=True)[int(len(param_changes) * 0.1)] # top 10% | |
| important_params = [name for name, change in param_changes.items() if change > threshold] | |
| print(important_params, threshold, len(param_changes), self.process_id) | |
| json.dump(important_params, open(f'{self.config.output_path}/{self.config.experiment_id}/param.json', 'w'), indent=4) | |
| if self.info.iter >= max_iters: | |
| break | |
| def sample(self, models: Models, data: WarpCore.Data, extras: Extras): | |
| models.generator.eval() | |
| models.train_norm.eval() | |
| with torch.no_grad(): | |
| batch = next(data.iterator) | |
| ratio = batch['images'].shape[-2] / batch['images'].shape[-1] | |
| shape_lr = self.get_target_lr_size(ratio) | |
| conditions = self.get_conditions(batch, models, extras, is_eval=True, is_unconditional=False, eval_image_embeds=False) | |
| unconditions = self.get_conditions(batch, models, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False) | |
| latents = self.encode_latents(batch, models, extras) | |
| latents_lr = self.encode_latents(batch, models, extras, target_size = shape_lr) | |
| if self.is_main_node: | |
| with torch.cuda.amp.autocast(dtype=torch.bfloat16): | |
| *_, (sampled, _, _, sampled_lr) = extras.gdf.sample( | |
| models.generator, conditions, | |
| latents.shape, latents_lr.shape, | |
| unconditions, device=self.device, **extras.sampling_configs | |
| ) | |
| sampled_ema = sampled | |
| sampled_ema_lr = sampled_lr | |
| if self.is_main_node: | |
| print('sampling results hr latent shape ', latents.shape, 'lr latent shape', latents_lr.shape, ) | |
| noised_images = torch.cat( | |
| [self.decode_latents(latents[i:i + 1].float(), batch, models, extras) for i in range(len(latents))], dim=0) | |
| sampled_images = torch.cat( | |
| [self.decode_latents(sampled[i:i + 1].float(), batch, models, extras) for i in range(len(sampled))], dim=0) | |
| sampled_images_ema = torch.cat( | |
| [self.decode_latents(sampled_ema[i:i + 1].float(), batch, models, extras) for i in range(len(sampled_ema))], | |
| dim=0) | |
| noised_images_lr = torch.cat( | |
| [self.decode_latents(latents_lr[i:i + 1].float(), batch, models, extras) for i in range(len(latents_lr))], dim=0) | |
| sampled_images_lr = torch.cat( | |
| [self.decode_latents(sampled_lr[i:i + 1].float(), batch, models, extras) for i in range(len(sampled_lr))], dim=0) | |
| sampled_images_ema_lr = torch.cat( | |
| [self.decode_latents(sampled_ema_lr[i:i + 1].float(), batch, models, extras) for i in range(len(sampled_ema_lr))], | |
| dim=0) | |
| images = batch['images'] | |
| if images.size(-1) != noised_images.size(-1) or images.size(-2) != noised_images.size(-2): | |
| images = nn.functional.interpolate(images, size=noised_images.shape[-2:], mode='bicubic') | |
| images_lr = nn.functional.interpolate(images, size=noised_images_lr.shape[-2:], mode='bicubic') | |
| collage_img = torch.cat([ | |
| torch.cat([i for i in images.cpu()], dim=-1), | |
| torch.cat([i for i in noised_images.cpu()], dim=-1), | |
| torch.cat([i for i in sampled_images.cpu()], dim=-1), | |
| torch.cat([i for i in sampled_images_ema.cpu()], dim=-1), | |
| ], dim=-2) | |
| collage_img_lr = torch.cat([ | |
| torch.cat([i for i in images_lr.cpu()], dim=-1), | |
| torch.cat([i for i in noised_images_lr.cpu()], dim=-1), | |
| torch.cat([i for i in sampled_images_lr.cpu()], dim=-1), | |
| torch.cat([i for i in sampled_images_ema_lr.cpu()], dim=-1), | |
| ], dim=-2) | |
| torchvision.utils.save_image(collage_img, f'{self.config.output_path}/{self.config.experiment_id}/{self.info.total_steps:06d}.jpg') | |
| torchvision.utils.save_image(collage_img_lr, f'{self.config.output_path}/{self.config.experiment_id}/{self.info.total_steps:06d}_lr.jpg') | |
| captions = batch['captions'] | |
| if self.config.wandb_project is not None: | |
| log_data = [ | |
| [captions[i]] + [wandb.Image(sampled_images[i])] + [wandb.Image(sampled_images_ema[i])] + [ | |
| wandb.Image(images[i])] for i in range(len(images))] | |
| log_table = wandb.Table(data=log_data, columns=["Captions", "Sampled", "Sampled EMA", "Orig"]) | |
| wandb.log({"Log": log_table}) | |
| if isinstance(extras.gdf.loss_weight, AdaptiveLossWeight): | |
| plt.plot(extras.gdf.loss_weight.bucket_ranges, extras.gdf.loss_weight.bucket_losses[:-1]) | |
| plt.ylabel('Raw Loss') | |
| plt.ylabel('LogSNR') | |
| wandb.log({"Loss/LogSRN": plt}) | |
| models.generator.train() | |
| models.train_norm.train() | |
| print('finish sampling') | |
| def sample_fortest(self, models: Models, extras: Extras, hr_shape, lr_shape, batch, eval_image_embeds=False): | |
| models.generator.eval() | |
| models.trans_inr.eval() | |
| with torch.no_grad(): | |
| if self.is_main_node: | |
| conditions = self.get_conditions(batch, models, extras, is_eval=True, is_unconditional=False, eval_image_embeds=eval_image_embeds) | |
| unconditions = self.get_conditions(batch, models, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False) | |
| with torch.cuda.amp.autocast(dtype=torch.bfloat16): | |
| *_, (sampled, _, _, sampled_lr) = extras.gdf.sample( | |
| models.generator, conditions, | |
| hr_shape, lr_shape, | |
| unconditions, device=self.device, **extras.sampling_configs | |
| ) | |
| if models.generator_ema is not None: | |
| *_, (sampled_ema, _, _, sampled_ema_lr) = extras.gdf.sample( | |
| models.generator_ema, conditions, | |
| latents.shape, latents_lr.shape, | |
| unconditions, device=self.device, **extras.sampling_configs | |
| ) | |
| else: | |
| sampled_ema = sampled | |
| sampled_ema_lr = sampled_lr | |
| return sampled, sampled_lr | |
| def main_worker(rank, cfg): | |
| print("Launching Script in main worker") | |
| warpcore = WurstCore( | |
| config_file_path=cfg, rank=rank, world_size = get_world_size() | |
| ) | |
| # core.fsdp_defaults['sharding_strategy'] = ShardingStrategy.NO_SHARD | |
| # RUN TRAINING | |
| warpcore(get_world_size()==1) | |
| if __name__ == '__main__': | |
| if get_master_ip() == "127.0.0.1": | |
| mp.spawn(main_worker, nprocs=get_world_size(), args=(sys.argv[1] if len(sys.argv) > 1 else None, )) | |
| else: | |
| main_worker(0, sys.argv[1] if len(sys.argv) > 1 else None, ) | |