rootglitch's picture
Added product text box
86d8605
import os
import shutil
import sys
import warnings
import random
import time
import logging
import fal_client
import base64
import numpy as np
import math
import scipy
import requests
import torch
import torchvision
import gradio as gr
import argparse
import spaces
from PIL import Image, ImageFilter, ImageOps, ImageDraw, ImageFont
from io import BytesIO
from typing import Dict, List, Tuple, Union, Optional
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[logging.StreamHandler()]
)
logger = logging.getLogger(__name__)
# Download model weights only if they don't exist
if not os.path.exists("groundingdino_swint_ogc.pth"):
os.system("wget https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swint_ogc.pth")
if not os.path.exists("sam_hq_vit_l.pth"):
os.system("wget https://huggingface.co/lkeab/hq-sam/resolve/main/sam_hq_vit_l.pth")
# Add paths
sys.path.append(os.path.join(os.getcwd(), "GroundingDINO"))
sys.path.append(os.path.join(os.getcwd(), "sam-hq"))
warnings.filterwarnings("ignore")
# Grounding DINO
import GroundingDINO.groundingdino.datasets.transforms as T
from GroundingDINO.groundingdino.models import build_model
from GroundingDINO.groundingdino.util.slconfig import SLConfig
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
# segment anything
from segment_anything import build_sam_vit_l, SamPredictor
# Constants
CONFIG_FILE = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py'
GROUNDINGDINO_CHECKPOINT = "groundingdino_swint_ogc.pth"
SAM_CHECKPOINT = 'sam_hq_vit_l.pth'
OUTPUT_DIR = "outputs"
# Global variables for model caching
_models = {
'groundingdino': None,
'sam_predictor': None
}
# Enable GPU if available with proper error handling
try:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
logger.info(f"Using device: {device}")
except Exception as e:
logger.warning(f"Error detecting GPU, falling back to CPU: {e}")
device = 'cpu'
class ModelManager:
"""Manages model loading, unloading, and provides error handling"""
@staticmethod
def load_model(model_name: str) -> None:
"""Load a model if not already loaded"""
try:
if model_name == 'groundingdino' and _models['groundingdino'] is None:
logger.info("Loading GroundingDINO model...")
start_time = time.time()
if not os.path.exists(GROUNDINGDINO_CHECKPOINT):
raise FileNotFoundError(f"GroundingDINO checkpoint not found at {GROUNDINGDINO_CHECKPOINT}")
args = SLConfig.fromfile(CONFIG_FILE)
args.device = device
model = build_model(args)
checkpoint = torch.load(GROUNDINGDINO_CHECKPOINT, map_location="cpu")
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
logger.info(f"GroundingDINO load result: {load_res}")
_ = model.eval()
_models['groundingdino'] = model
logger.info(f"GroundingDINO model loaded in {time.time() - start_time:.2f} seconds")
elif model_name == 'sam' and _models['sam_predictor'] is None:
logger.info("Loading SAM-HQ model...")
start_time = time.time()
if not os.path.exists(SAM_CHECKPOINT):
raise FileNotFoundError(f"SAM checkpoint not found at {SAM_CHECKPOINT}")
sam = build_sam_vit_l(checkpoint=SAM_CHECKPOINT)
sam.to(device=device)
_models['sam_predictor'] = SamPredictor(sam)
logger.info(f"SAM-HQ model loaded in {time.time() - start_time:.2f} seconds")
except Exception as e:
logger.error(f"Error loading {model_name} model: {e}")
raise RuntimeError(f"Failed to load {model_name} model: {e}")
@staticmethod
def get_model(model_name: str):
"""Get a model, loading it if necessary"""
if model_name not in _models or _models[model_name] is None:
ModelManager.load_model(model_name)
return _models[model_name]
@staticmethod
def unload_model(model_name: str) -> None:
"""Unload a model to free memory"""
if model_name in _models and _models[model_name] is not None:
logger.info(f"Unloading {model_name} model")
_models[model_name] = None
if device == 'cuda':
torch.cuda.empty_cache()
def transform_image(image_pil: Image.Image) -> torch.Tensor:
"""Transform PIL image for GroundingDINO"""
transform = T.Compose([
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
image, _ = transform(image_pil, None) # 3, h, w
return image
def get_grounding_output(
image: torch.Tensor,
caption: str,
box_threshold: float,
text_threshold: float,
with_logits: bool = True
) -> Tuple[torch.Tensor, torch.Tensor, List[str]]:
"""Run GroundingDINO to get bounding boxes from text prompt"""
try:
model = ModelManager.get_model('groundingdino')
# Format caption
caption = caption.lower().strip()
if not caption.endswith("."):
caption = caption + "."
with torch.no_grad():
outputs = model(image[None], captions=[caption])
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
# Filter output
logits_filt = logits.clone()
boxes_filt = boxes.clone()
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
logits_filt = logits_filt[filt_mask] # num_filt, 256
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
# Get phrases
tokenizer = model.tokenizer
tokenized = tokenizer(caption)
pred_phrases = []
scores = []
for logit, box in zip(logits_filt, boxes_filt):
pred_phrase = get_phrases_from_posmap(
logit > text_threshold, tokenized, tokenizer)
if with_logits:
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
else:
pred_phrases.append(pred_phrase)
scores.append(logit.max().item())
return boxes_filt, torch.Tensor(scores), pred_phrases
except Exception as e:
logger.error(f"Error in grounding output: {e}")
# Return empty results instead of crashing
return torch.Tensor([]), torch.Tensor([]), []
def draw_mask(mask: np.ndarray, draw: ImageDraw.Draw) -> None:
"""Draw mask on image"""
color = (255, 255, 255, 255)
nonzero_coords = np.transpose(np.nonzero(mask))
for coord in nonzero_coords:
draw.point(coord[::-1], fill=color)
def draw_box(box: torch.Tensor, draw: ImageDraw.Draw, label: Optional[str]) -> None:
"""Draw bounding box on image"""
color = tuple(np.random.randint(0, 255, size=3).tolist())
draw.rectangle(((box[0], box[1]), (box[2], box[3])), outline=color, width=2)
if label:
font = ImageFont.load_default()
if hasattr(font, "getbbox"):
bbox = draw.textbbox((box[0], box[1]), str(label), font)
else:
w, h = draw.textsize(str(label), font)
bbox = (box[0], box[1], w + box[0], box[1] + h)
draw.rectangle(bbox, fill=color)
draw.text((box[0], box[1]), str(label), fill="white")
def run_grounded_sam(input_image, product):
"""Main function to run GroundingDINO and SAM-HQ"""
# Create output directory
os.makedirs(OUTPUT_DIR, exist_ok=True)
text_prompt = product
task_type = 'text'
box_threshold = 0.3
text_threshold = 0.25
iou_threshold = 0.8
hq_token_only = True
# Process input image
if isinstance(input_image, dict):
# Input from gradio sketch component
scribble = np.array(input_image["mask"])
image_pil = input_image["image"].convert("RGB")
else:
# Direct image input
image_pil = input_image.convert("RGB") if input_image else None
scribble = None
if image_pil is None:
logger.error("No input image provided")
return [Image.new('RGB', (400, 300), color='gray')]
# Transform image for GroundingDINO
transformed_image = transform_image(image_pil)
# Load models as needed
ModelManager.load_model('groundingdino')
size = image_pil.size
H, W = size[1], size[0]
# Run GroundingDINO with provided text
boxes_filt, scores, pred_phrases = get_grounding_output(
transformed_image, text_prompt, box_threshold, text_threshold
)
if boxes_filt is not None:
# Scale boxes to image dimensions
for i in range(boxes_filt.size(0)):
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
boxes_filt[i][2:] += boxes_filt[i][:2]
# Apply non-maximum suppression if we have multiple boxes
if boxes_filt.size(0) > 1:
logger.info(f"Before NMS: {boxes_filt.shape[0]} boxes")
nms_idx = torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist()
boxes_filt = boxes_filt[nms_idx]
pred_phrases = [pred_phrases[idx] for idx in nms_idx]
logger.info(f"After NMS: {boxes_filt.shape[0]} boxes")
# Load SAM model
ModelManager.load_model('sam')
sam_predictor = ModelManager.get_model('sam_predictor')
# Set image for SAM
image = np.array(image_pil)
sam_predictor.set_image(image)
# Run SAM
# Use boxes for these task types
if boxes_filt.size(0) == 0:
logger.warning("No boxes detected")
return [image_pil, Image.new('RGBA', size, color=(0, 0, 0, 0))]
transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(device)
masks, _, _ = sam_predictor.predict_torch(
point_coords=None,
point_labels=None,
boxes=transformed_boxes,
multimask_output=False,
hq_token_only=hq_token_only,
)
# Create mask image
mask_image = Image.new('RGBA', size, color=(0, 0, 0, 0))
mask_draw = ImageDraw.Draw(mask_image)
# Draw masks
for mask in masks:
draw_mask(mask[0].cpu().numpy(), mask_draw)
# Draw boxes and points on original image
image_draw = ImageDraw.Draw(image_pil)
for box, label in zip(boxes_filt, pred_phrases):
draw_box(box, image_draw, label)
return mask_image
# except Exception as e:
# logger.error(f"Error in run_grounded_sam: {e}")
# # Return original image on error
# if isinstance(input_image, dict) and "image" in input_image:
# return [input_image["image"], Image.new('RGBA', input_image["image"].size, color=(0, 0, 0, 0))]
# elif isinstance(input_image, Image.Image):
# return [input_image, Image.new('RGBA', input_image.size, color=(0, 0, 0, 0))]
# else:
# return [Image.new('RGB', (400, 300), color='gray'), Image.new('RGBA', (400, 300), color=(0, 0, 0, 0))]
def split_image_with_alpha(image):
image = image.convert("RGB")
return image
def gaussian_blur(image, radius=10):
"""Apply Gaussian blur to image."""
blurred = image.filter(ImageFilter.GaussianBlur(radius=10))
return blurred
def invert_image(image):
img_inverted = ImageOps.invert(image)
return img_inverted
def expand_mask(mask, expand, tapered_corners):
# Ensure mask is in grayscale (mode 'L')
mask = mask.convert("L")
# Convert to NumPy array
mask_np = np.array(mask)
# Define kernel
c = 0 if tapered_corners else 1
kernel = np.array([[c, 1, c],
[1, 1, 1],
[c, 1, c]], dtype=np.uint8)
# Perform dilation or erosion based on expand value
if expand > 0:
for _ in range(expand):
mask_np = scipy.ndimage.grey_dilation(mask_np, footprint=kernel)
elif expand < 0:
for _ in range(abs(expand)):
mask_np = scipy.ndimage.grey_erosion(mask_np, footprint=kernel)
# Convert back to PIL image
return Image.fromarray(mask_np, mode="L")
def image_blend_by_mask(image_a, image_b, mask, blend_percentage):
# Ensure images have the same size and mode
image_a = image_a.convert('RGB')
image_b = image_b.convert('RGB')
mask = mask.convert('L')
# Resize images if they don't match
if image_a.size != image_b.size:
image_b = image_b.resize(image_a.size, Image.LANCZOS)
# Ensure mask has the same size
if mask.size != image_a.size:
mask = mask.resize(image_a.size, Image.LANCZOS)
# Invert mask
mask = ImageOps.invert(mask)
# Mask image
masked_img = Image.composite(image_a, image_b, mask)
# Blend image
blend_mask = Image.new(mode="L", size=image_a.size,
color=(round(blend_percentage * 255)))
blend_mask = ImageOps.invert(blend_mask)
img_result = Image.composite(image_a, masked_img, blend_mask)
del image_a, image_b, blend_mask, mask
return img_result
def blend_images(image_a, image_b, blend_percentage):
"""Blend img_b over image_a using the normal mode with a blend percentage."""
img_a = image_a.convert("RGBA")
img_b = image_b.convert("RGBA")
# Blend img_b over img_a using alpha_composite (normal blend mode)
out_image = Image.alpha_composite(img_a, img_b)
out_image = out_image.convert("RGB")
# Create blend mask
blend_mask = Image.new("L", image_a.size, round(blend_percentage * 255))
blend_mask = ImageOps.invert(blend_mask) # Invert the mask
# Apply composite blend
result = Image.composite(image_a, out_image, blend_mask)
return result
def apply_image_levels(image, black_level, mid_level, white_level):
levels = AdjustLevels(black_level, mid_level, white_level)
adjusted_image = levels.adjust(image)
return adjusted_image
class AdjustLevels:
def __init__(self, min_level, mid_level, max_level):
self.min_level = min_level
self.mid_level = mid_level
self.max_level = max_level
def adjust(self, im):
im_arr = np.array(im).astype(np.float32)
im_arr[im_arr < self.min_level] = self.min_level
im_arr = (im_arr - self.min_level) * \
(255 / (self.max_level - self.min_level))
im_arr = np.clip(im_arr, 0, 255)
# mid-level adjustment
gamma = math.log(0.5) / math.log((self.mid_level - self.min_level) / (self.max_level - self.min_level))
im_arr = np.power(im_arr / 255, gamma) * 255
im_arr = im_arr.astype(np.uint8)
im = Image.fromarray(im_arr)
return im
def resize_image(image, scaling_factor=1):
image = image.resize((int(image.width * scaling_factor),
int(image.height * scaling_factor)))
return image
def upscale_image(image, size):
new_image = image.resize((size, size), Image.LANCZOS)
return new_image
def resize_to_square(image, size=1024):
# Load image if a file path is provided
if isinstance(image, str):
img = Image.open(image).convert("RGBA")
else:
img = image.convert("RGBA") # If already an Image object
# Resize while maintaining aspect ratio
img.thumbnail((size, size), Image.LANCZOS)
# Create a transparent square canvas
square_img = Image.new("RGBA", (size, size), (0, 0, 0, 0))
# Calculate the position to paste the resized image (centered)
x_offset = (size - img.width) // 2
y_offset = (size - img.height) // 2
# Extract the alpha channel as a mask
mask = img.split()[3] if img.mode == "RGBA" else None
# Paste the resized image onto the square canvas with the correct transparency mask
square_img.paste(img, (x_offset, y_offset), mask)
return square_img
def encode_image(image):
buffer = BytesIO()
image.save(buffer, format="PNG")
encoded_image = base64.b64encode(buffer.getvalue()).decode("utf-8")
return f"data:image/png;base64,{encoded_image}"
def generate_ai_bg(input_img, prompt):
# input_img = resize_image(input_img, 0.01)
hf_input_img = encode_image(input_img)
handler = fal_client.submit(
"fal-ai/iclight-v2",
arguments={
"prompt": prompt,
"image_url": hf_input_img
},
webhook_url="https://optional.webhook.url/for/results",
)
request_id = handler.request_id
status = fal_client.status("fal-ai/iclight-v2", request_id, with_logs=True)
result = fal_client.result("fal-ai/iclight-v2", request_id)
relight_img_path = result['images'][0]['url']
response = requests.get(relight_img_path, stream=True)
relight_img = Image.open(BytesIO(response.content)).convert("RGBA")
# from gradio_client import Client, handle_file
# client = Client("lllyasviel/iclight-v2-vary")
# result = client.predict(
# input_fg=handle_file(input_img),
# bg_source="None",
# prompt=prompt,
# image_width=256,
# image_height=256,
# num_samples=1,
# seed=12345,
# steps=25,
# n_prompt="lowres, bad anatomy, bad hands, cropped, worst quality",
# cfg=2,
# gs=5,
# enable_hr_fix=True,
# hr_downscale=0.5,
# lowres_denoise=0.8,
# highres_denoise=0.99,
# api_name="/process"
# )
# print(result)
# relight_img_path = result[0][0]['image']
# relight_img = Image.open(relight_img_path).convert("RGBA")
return relight_img
def blend_details(input_image, relit_image, masked_image, product, scaling_factor=1):
# input_image = resize_image(input_image)
# relit_image = resize_image(relit_image)
# masked_image = resize_image(masked_image)
masked_image_rgb = split_image_with_alpha(masked_image)
masked_image_blurred = gaussian_blur(masked_image_rgb, radius=10)
grow_mask = expand_mask(masked_image_blurred, -15, True)
# grow_mask.save("output/grow_mask.png")
# Split images and get RGB channels
input_image_rgb = split_image_with_alpha(input_image)
input_blurred = gaussian_blur(input_image_rgb, radius=10)
input_inverted = invert_image(input_image_rgb)
# input_blurred.save("output/input_blurred.png")
# input_inverted.save("output/input_inverted.png")
# Add blurred and inverted images
input_blend_1 = blend_images(input_inverted, input_blurred, blend_percentage=0.5)
input_blend_1_inverted = invert_image(input_blend_1)
input_blend_2 = blend_images(input_blurred, input_blend_1_inverted, blend_percentage=1.0)
# input_blend_2.save("output/input_blend_2.png")
# Process relit image
relit_image_rgb = split_image_with_alpha(relit_image)
relit_blurred = gaussian_blur(relit_image_rgb, radius=10)
relit_inverted = invert_image(relit_image_rgb)
# relit_blurred.save("output/relit_blurred.png")
# relit_inverted.save("output/relit_inverted.png")
# Add blurred and inverted relit images
relit_blend_1 = blend_images(relit_inverted, relit_blurred, blend_percentage=0.5)
relit_blend_1_inverted = invert_image(relit_blend_1)
relit_blend_2 = blend_images(relit_blurred, relit_blend_1_inverted, blend_percentage=1.0)
# relit_blend_2.save("output/relit_blend_2.png")
high_freq_comp = image_blend_by_mask(relit_blend_2, input_blend_2, grow_mask, blend_percentage=1.0)
# high_freq_comp.save("output/high_freq_comp.png")
comped_image = blend_images(relit_blurred, high_freq_comp, blend_percentage=0.65)
# comped_image.save("output/comped_image.png")
final_image = apply_image_levels(comped_image, black_level=83, mid_level=128, white_level=172)
# final_image.save("output/final_image.png")
return final_image
@spaces.GPU
def generate_image(input_image_path, prompt):
# resized_input_img = resize_to_square(input_image_path, 256)
# resized_input_img_path = '/tmp/gradio/resized_input_img.png'
# resized_input_img.convert("RGBA").save(resized_input_img_path, "PNG")
# ai_gen_image = generate_ai_bg(resized_input_img, prompt)
# upscaled_ai_image = upscale_image(ai_gen_image, 8192)
# upscaled_input_image = upscale_image(resized_input_img, 8192)
# mask_input_image = run_grounded_sam(upscaled_input_image)
# final_image = blend_details(upscaled_input_image, upscaled_ai_image, mask_input_image)
# FAL
resized_input_img = resize_to_square(input_image_path, 1024)
ai_gen_image = generate_ai_bg(resized_input_img, prompt)
mask_input_image = run_grounded_sam(resized_input_img, product)
final_image = blend_details(resized_input_img, ai_gen_image, mask_input_image, product)
return final_image
def create_ui():
"""Create Gradio UI for CarViz demo"""
with gr.Blocks(title="CarViz Demo") as block:
gr.Markdown("""
# CarViz
""")
with gr.Row():
with gr.Column():
input_image_path = gr.Image(type="filepath", label="image")
product = gr.Textbox(label="Product", placeholder="Enter what your product is here...")
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...")
run_button = gr.Button(value='Run')
with gr.Column():
output_image = gr.Image(label="Generated Image")
# Run button
run_button.click(
fn=generate_image,
inputs=[
input_image_path,
product,
prompt
],
outputs=[output_image]
)
return block
if __name__ == "__main__":
parser = argparse.ArgumentParser("Carviz demo", add_help=True)
parser.add_argument("--debug", action="store_true", help="using debug mode")
parser.add_argument("--share", action="store_true", help="share the app")
parser.add_argument('--no-gradio-queue', action="store_true", help="disable gradio queue")
parser.add_argument('--port', type=int, default=7860, help="port to run the app")
parser.add_argument('--host', type=str, default="0.0.0.0", help="host to run the app")
args = parser.parse_args()
logger.info(f"Starting CarViz demo with args: {args}")
# Check for model files
if not os.path.exists(GROUNDINGDINO_CHECKPOINT):
logger.warning(f"GroundingDINO checkpoint not found at {GROUNDINGDINO_CHECKPOINT}")
if not os.path.exists(SAM_CHECKPOINT):
logger.warning(f"SAM-HQ checkpoint not found at {SAM_CHECKPOINT}")
# Create app
block = create_ui()
if not args.no_gradio_queue:
block = block.queue()
# Launch app
try:
block.launch(
debug=args.debug,
share=args.share,
show_error=True,
server_name=args.host,
server_port=args.port
)
except Exception as e:
logger.error(f"Error launching app: {e}")