|
import torch |
|
import soundfile as sf |
|
from transformers import AutoModelForCTC, Wav2Vec2BertProcessor |
|
from pydub import AudioSegment |
|
import streamlit as st |
|
import tempfile |
|
import librosa |
|
|
|
|
|
available_models = ['Yehor/w2v-bert-2.0-uk'] |
|
|
|
st.title("Voice Recognition App") |
|
|
|
|
|
model_name = st.selectbox("Choose a model", available_models) |
|
|
|
|
|
|
|
|
|
|
|
|
|
asr_model = AutoModelForCTC.from_pretrained(model_name).to('cpu') |
|
processor = Wav2Vec2BertProcessor.from_pretrained(model_name) |
|
|
|
|
|
|
|
|
|
|
|
def map_to_pred(file_path, sampling_rate = 16_000, device = 'cpu'): |
|
audio_inputs = [] |
|
|
|
|
|
audio, _ = librosa.load(file_path) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inputs = processor([audio], sampling_rate=sampling_rate).input_features |
|
|
|
features = torch.tensor(inputs).to(device) |
|
|
|
with torch.no_grad(): |
|
logits = asr_model(features).logits |
|
|
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
predictions = processor.batch_decode(predicted_ids) |
|
|
|
|
|
print('Predictions:') |
|
|
|
return predictions |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uploaded_file = st.file_uploader("Choose file", type=["wav", "mp3"]) |
|
|
|
if uploaded_file is not None: |
|
|
|
file_path = './temp.wav' |
|
with open(file_path, 'wb') as f: |
|
f.write(uploaded_file.getbuffer()) |
|
|
|
|
|
with tempfile.NamedTemporaryFile(delete=False) as temp_file: |
|
temp_file.write(uploaded_file.read()) |
|
temp_file_path = temp_file.name |
|
|
|
|
|
audio = AudioSegment.from_file(temp_file_path) |
|
temp_wav_path = tempfile.mktemp(suffix=".wav") |
|
audio.export(temp_wav_path, format="wav") |
|
|
|
st.audio(uploaded_file, format="audio/wav") |
|
|
|
text = map_to_pred(file_path) |
|
|
|
|
|
st.write('Input audio:', uploaded_file.name) |
|
st.write('Predicted standard:', text) |