roman
commited on
Commit
·
f9a3e58
1
Parent(s):
186a3b7
try new approach
Browse files
app.py
CHANGED
@@ -1,61 +1,34 @@
|
|
1 |
import streamlit as st
|
|
|
2 |
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
|
3 |
-
import tempfile
|
4 |
-
from pydub import AudioSegment
|
5 |
-
import numpy as np
|
6 |
-
import torch
|
7 |
|
8 |
|
9 |
-
# Load the processor and model
|
10 |
-
@st.cache_resource
|
11 |
-
def load_model_and_processor():
|
12 |
-
processor = AutoProcessor.from_pretrained("arampacha/whisper-large-uk-2")
|
13 |
-
model = AutoModelForSpeechSeq2Seq.from_pretrained("arampacha/whisper-large-uk-2")
|
14 |
-
return processor, model
|
15 |
|
|
|
16 |
|
17 |
-
|
18 |
|
19 |
-
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
|
25 |
-
#
|
26 |
-
|
|
|
|
|
|
|
27 |
|
|
|
28 |
if uploaded_file is not None:
|
29 |
-
#
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
|
34 |
-
|
35 |
-
audio = AudioSegment.from_file(temp_file_path)
|
36 |
-
temp_wav_path = tempfile.mktemp(suffix=".wav")
|
37 |
-
audio.export(temp_wav_path, format="wav")
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
st.write(
|
42 |
-
|
43 |
-
# Read the audio file
|
44 |
-
audio_input = AudioSegment.from_file(temp_wav_path).set_frame_rate(16000).set_channels(1)
|
45 |
-
audio_input = np.array(audio_input.get_array_of_samples(), dtype=np.float32)
|
46 |
-
|
47 |
-
# Normalize audio
|
48 |
-
audio_input = (audio_input - np.mean(audio_input)) / np.std(audio_input)
|
49 |
-
audio_input = torch.tensor(audio_input).unsqueeze(0)
|
50 |
-
|
51 |
-
# Process the audio
|
52 |
-
input_features = processor(audio_input, sampling_rate=16000, return_tensors="pt").input_features
|
53 |
-
|
54 |
-
# Generate transcription
|
55 |
-
with torch.no_grad():
|
56 |
-
predicted_ids = model.generate(input_features)
|
57 |
-
|
58 |
-
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
59 |
-
|
60 |
-
st.write("Transcription:")
|
61 |
-
st.write(transcription)
|
|
|
1 |
import streamlit as st
|
2 |
+
import librosa
|
3 |
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
|
|
|
|
|
|
|
|
|
4 |
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
uploaded_file = st.file_uploader("上传文件", type="wav")
|
8 |
|
9 |
+
processor = AutoProcessor.from_pretrained("Yehor/whisper-small-ukrainian")
|
10 |
|
11 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained("Yehor/whisper-small-ukrainian")
|
12 |
|
13 |
+
def map_to_pred(file_path):
|
14 |
+
# load audio file
|
15 |
+
audio, _ = librosa.load(file_path)
|
16 |
|
17 |
+
# preprocess audio and generate standard
|
18 |
+
input_features = processor([audio], return_tensors="pt", sampling_rate=16_000).input_features
|
19 |
+
generated_ids = model.generate(inputs=input_features)
|
20 |
+
transcription = processor.batch_decode(generated_ids, normalize=True, skip_special_tokens=True)
|
21 |
+
text = processor.tokenizer._normalize(transcription[0])
|
22 |
|
23 |
+
return text
|
24 |
if uploaded_file is not None:
|
25 |
+
# convert file object to file path
|
26 |
+
file_path = './temp.wav'
|
27 |
+
with open(file_path, 'wb') as f:
|
28 |
+
f.write(uploaded_file.getbuffer())
|
29 |
|
30 |
+
text = map_to_pred(file_path)
|
|
|
|
|
|
|
31 |
|
32 |
+
# display results
|
33 |
+
st.write('Input audio:', uploaded_file.name)
|
34 |
+
st.write('Predicted standard:', text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|