roman
commited on
Commit
·
c1dd4e9
1
Parent(s):
33b3376
change app for whisper testing
Browse files
app.py
CHANGED
|
@@ -1,32 +1,34 @@
|
|
| 1 |
-
# import streamlit as st
|
| 2 |
-
#
|
| 3 |
-
# x = st.slider('Select a value')
|
| 4 |
-
# st.write(x, 'squared is', x * x)
|
| 5 |
-
|
| 6 |
-
|
| 7 |
import streamlit as st
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
st.
|
| 11 |
|
| 12 |
-
|
| 13 |
-
generator = pipeline('text-generation', model='gpt2')
|
| 14 |
|
| 15 |
-
|
|
|
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
if
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
st.write('Generated Text:')
|
| 25 |
-
st.write(outputs[0]['generated_text'])
|
| 26 |
-
else:
|
| 27 |
-
st.write('Please enter some text to generate.')
|
| 28 |
|
| 29 |
-
|
| 30 |
-
# st.title('ACR')
|
| 31 |
|
|
|
|
| 32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import whisper
|
| 3 |
+
import tempfile
|
| 4 |
+
from pydub import AudioSegment
|
| 5 |
+
|
| 6 |
+
# Load the Whisper model
|
| 7 |
+
model = whisper.load_model("base")
|
| 8 |
|
| 9 |
+
st.title("Voice Recognition App using Whisper")
|
| 10 |
|
| 11 |
+
st.write("Upload an audio file and the Whisper model will transcribe it to text.")
|
|
|
|
| 12 |
|
| 13 |
+
# File uploader for audio file
|
| 14 |
+
uploaded_file = st.file_uploader("Choose an audio file", type=["wav", "mp3", "m4a"])
|
| 15 |
|
| 16 |
+
if uploaded_file is not None:
|
| 17 |
+
# Save the uploaded file temporarily
|
| 18 |
+
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
|
| 19 |
+
temp_file.write(uploaded_file.read())
|
| 20 |
+
temp_file_path = temp_file.name
|
| 21 |
|
| 22 |
+
# Convert audio file to a format supported by Whisper (if necessary)
|
| 23 |
+
audio = AudioSegment.from_file(temp_file_path)
|
| 24 |
+
temp_wav_path = tempfile.mktemp(suffix=".wav")
|
| 25 |
+
audio.export(temp_wav_path, format="wav")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
+
st.audio(uploaded_file, format="audio/wav")
|
|
|
|
| 28 |
|
| 29 |
+
st.write("Transcribing audio...")
|
| 30 |
|
| 31 |
+
# Transcribe audio using Whisper model
|
| 32 |
+
result = model.transcribe(temp_wav_path)
|
| 33 |
+
st.write("Transcription:")
|
| 34 |
+
st.write(result["text"])
|