rojikada commited on
Commit
ac3f101
·
verified ·
1 Parent(s): 2a98688

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -36
app.py CHANGED
@@ -7,42 +7,6 @@ import pandas as pd
7
  from langchain_core.messages import HumanMessage
8
  from agent import build_graph
9
 
10
- import os
11
- from datasets import load_dataset
12
- from langchain.schema import Document
13
- from langchain.embeddings import HuggingFaceEmbeddings
14
- from langchain.vectorstores import SupabaseVectorStore
15
- from supabase import create_client
16
-
17
- # 1. Load GAIA train split
18
- dataset = load_dataset("gaia-benchmark/GAIA", split="train")
19
-
20
- # 2. Build Documents: "Q: …\nA: …"
21
- docs = []
22
- for ex in dataset:
23
- q, a = ex["question"], ex["answer"]
24
- docs.append(Document(
25
- page_content=f"Q: {q}\nA: {a}",
26
- metadata={"task_id": ex.get("task_id"), "split": "train"}
27
- ))
28
-
29
- # 3. Initialize embedding & Supabase client
30
- embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
31
- supabase_url = os.environ["SUPABASE_URL"]
32
- supabase_key = os.environ["SUPABASE_SERVICE_KEY"]
33
- supabase = create_client(supabase_url, supabase_key)
34
-
35
- # 4. Upload to Supabase
36
- vectorstore = SupabaseVectorStore.from_documents(
37
- docs,
38
- embedding=embeddings,
39
- client=supabase,
40
- table_name="documents",
41
- query_name="match_documents_langchain"
42
- )
43
-
44
- print(f"Seeded {len(docs)} GAIA examples into Supabase.")
45
-
46
 
47
  # (Keep Constants as is)
48
  # --- Constants ---
 
7
  from langchain_core.messages import HumanMessage
8
  from agent import build_graph
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
  # (Keep Constants as is)
12
  # --- Constants ---