Deploy chatbot
Browse files- Dockerfile +23 -0
- app.py +128 -0
- requirements.txt +12 -0
Dockerfile
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use the official Python image.
|
2 |
+
FROM python:3.9
|
3 |
+
|
4 |
+
# Set environment variables
|
5 |
+
ENV PATH="/home/user/.local/bin:$PATH"
|
6 |
+
|
7 |
+
# Set the working directory in the container
|
8 |
+
WORKDIR /app
|
9 |
+
|
10 |
+
# Copy the requirements file
|
11 |
+
COPY requirements.txt requirements.txt
|
12 |
+
|
13 |
+
# Install dependencies
|
14 |
+
RUN pip install --no-cache-dir --upgrade -r requirements.txt
|
15 |
+
|
16 |
+
# Copy the content of the local src directory to the working directory
|
17 |
+
COPY . /app
|
18 |
+
|
19 |
+
# Expose port 7860
|
20 |
+
EXPOSE 7860
|
21 |
+
|
22 |
+
# Command to run the app
|
23 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sqlite3
|
3 |
+
from fastapi import FastAPI, Request, Depends, HTTPException
|
4 |
+
from fastapi.responses import JSONResponse, RedirectResponse
|
5 |
+
from pydantic import BaseModel
|
6 |
+
from functools import wraps
|
7 |
+
import hashlib
|
8 |
+
from textblob import TextBlob
|
9 |
+
from groq import Groq
|
10 |
+
from starlette.middleware.sessions import SessionMiddleware
|
11 |
+
from starlette.responses import RedirectResponse
|
12 |
+
from starlette.staticfiles import StaticFiles
|
13 |
+
|
14 |
+
app = FastAPI()
|
15 |
+
|
16 |
+
# Secret key for sessions
|
17 |
+
app.add_middleware(SessionMiddleware, secret_key=os.urandom(24))
|
18 |
+
|
19 |
+
# Initialize the Groq client with your API key
|
20 |
+
client = Groq(api_key='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')
|
21 |
+
|
22 |
+
# Database initialization
|
23 |
+
def init_db():
|
24 |
+
conn = sqlite3.connect('chat_history.db')
|
25 |
+
c = conn.cursor()
|
26 |
+
|
27 |
+
# Users table
|
28 |
+
c.execute('''CREATE TABLE IF NOT EXISTS users
|
29 |
+
(id INTEGER PRIMARY KEY AUTOINCREMENT,
|
30 |
+
username TEXT UNIQUE NOT NULL,
|
31 |
+
password TEXT NOT NULL,
|
32 |
+
created_at DATETIME DEFAULT CURRENT_TIMESTAMP)''')
|
33 |
+
|
34 |
+
c.execute('''CREATE TABLE IF NOT EXISTS chats
|
35 |
+
(id INTEGER PRIMARY KEY AUTOINCREMENT,
|
36 |
+
user_id INTEGER NOT NULL,
|
37 |
+
user_message TEXT NOT NULL,
|
38 |
+
bot_response TEXT NOT NULL,
|
39 |
+
sentiment_score REAL,
|
40 |
+
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP,
|
41 |
+
FOREIGN KEY (user_id) REFERENCES users (id))''')
|
42 |
+
|
43 |
+
conn.commit()
|
44 |
+
conn.close()
|
45 |
+
|
46 |
+
init_db()
|
47 |
+
|
48 |
+
# Helper functions
|
49 |
+
def hash_password(password):
|
50 |
+
return hashlib.sha256(password.encode()).hexdigest()
|
51 |
+
|
52 |
+
def get_sentiment(text):
|
53 |
+
analysis = TextBlob(text)
|
54 |
+
return analysis.sentiment.polarity
|
55 |
+
|
56 |
+
def store_chat(user_id, user_message, bot_response, sentiment_score):
|
57 |
+
conn = sqlite3.connect('chat_history.db')
|
58 |
+
c = conn.cursor()
|
59 |
+
c.execute('''INSERT INTO chats (user_id, user_message, bot_response, sentiment_score)
|
60 |
+
VALUES (?, ?, ?, ?)''', (user_id, user_message, bot_response, sentiment_score))
|
61 |
+
conn.commit()
|
62 |
+
conn.close()
|
63 |
+
|
64 |
+
# New generate_response function using Groq API
|
65 |
+
def generate_response(prompt):
|
66 |
+
try:
|
67 |
+
chat_completion = client.chat.completions.create(
|
68 |
+
messages=[
|
69 |
+
{
|
70 |
+
"role": "system",
|
71 |
+
"content": "You are Amara, a chatbot created to help. Be helpful, truthful, and attentive to emotions. Consider the previous conversation context for personalized responses. Keep it short and concise."
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"role": "user",
|
75 |
+
"content": prompt,
|
76 |
+
}
|
77 |
+
],
|
78 |
+
model="llama3-70b-8192",
|
79 |
+
temperature=0.5,
|
80 |
+
max_tokens=1024,
|
81 |
+
top_p=1,
|
82 |
+
stop=None,
|
83 |
+
stream=False
|
84 |
+
)
|
85 |
+
return chat_completion.choices[0].message.content
|
86 |
+
except Exception as e:
|
87 |
+
return f"Error generating response: {e}"
|
88 |
+
|
89 |
+
# Define request models
|
90 |
+
class UserMessage(BaseModel):
|
91 |
+
message: str
|
92 |
+
|
93 |
+
@app.post("/chat")
|
94 |
+
async def chat_endpoint(request: Request, message: UserMessage):
|
95 |
+
user_message = message.message
|
96 |
+
user_id = request.session.get("user_id")
|
97 |
+
|
98 |
+
if not user_id:
|
99 |
+
raise HTTPException(status_code=401, detail="User not logged in")
|
100 |
+
|
101 |
+
# Get user's recent chat history for context
|
102 |
+
conn = sqlite3.connect('chat_history.db')
|
103 |
+
c = conn.cursor()
|
104 |
+
c.execute('''SELECT user_message, bot_response
|
105 |
+
FROM chats
|
106 |
+
WHERE user_id = ?
|
107 |
+
ORDER BY timestamp DESC LIMIT 5''', (user_id,))
|
108 |
+
recent_chats = c.fetchall()
|
109 |
+
conn.close()
|
110 |
+
|
111 |
+
context = "Previous conversation:\n"
|
112 |
+
for user_msg, bot_msg in reversed(recent_chats):
|
113 |
+
context += f"User: {user_msg}\nAmara: {bot_msg}\n"
|
114 |
+
|
115 |
+
full_prompt = f"{context}\nUser: {user_message}\nAmara:"
|
116 |
+
|
117 |
+
try:
|
118 |
+
bot_response = generate_response(full_prompt)
|
119 |
+
sentiment_score = get_sentiment(user_message)
|
120 |
+
store_chat(user_id, user_message, bot_response, sentiment_score)
|
121 |
+
|
122 |
+
return JSONResponse({
|
123 |
+
'response': bot_response,
|
124 |
+
'sentiment': sentiment_score
|
125 |
+
})
|
126 |
+
except Exception as e:
|
127 |
+
raise HTTPException(status_code=500, detail=f"I apologize, but I encountered an error: {str(e)}")
|
128 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Flask==3.0.3
|
2 |
+
huggingface_hub==0.24.3
|
3 |
+
textblob==0.18.0.post0
|
4 |
+
torch==2.1.2
|
5 |
+
transformers==4.45.2
|
6 |
+
fastapi
|
7 |
+
uvicorn[standard]
|
8 |
+
sqlite3
|
9 |
+
textblob
|
10 |
+
groq
|
11 |
+
hashlib
|
12 |
+
pydantic
|