import streamlit as st from transformers import AutoTokenizer from auto_gptq import AutoGPTQForCausalLM import torch import subprocess import traceback # Function to get memory info def get_gpu_memory(): try: result = subprocess.check_output(["nvidia-smi", "--query-gpu=memory.free,memory.total", "--format=csv,nounits,noheader"], text=True) memory_info = [x.split(',') for x in result.strip().split('\n')] memory_info = [{"free": int(x[0].strip()), "total": int(x[1].strip())} for x in memory_info] except FileNotFoundError: memory_info = [{"free": "N/A", "total": "N/A"}] return memory_info # Display GPU memory information before loading the model gpu_memory_before = get_gpu_memory() st.write(f"GPU Memory Info before loading the model: {gpu_memory_before}") # Define pretrained model directory pretrained_model_dir = "FPHam/Jackson_The_Formalizer_V2_13b_GPTQ" # Check if CUDA is available and get the device device = "cuda:0" if torch.cuda.is_available() else "cpu" # Before allocating or loading the model, clear up memory if CUDA is available if device == "cuda:0": torch.cuda.empty_cache() # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=False) tokenizer.pad_token = tokenizer.eos_token # Ensure padding token is set correctly for the model # Attempt to load the model, catch any OOM errors @st.cache_resource def load_gptq_model(): model = AutoGPTQForCausalLM.from_quantized( pretrained_model_dir, model_basename="Jackson2-4bit-128g-GPTQ", use_safetensors=True, device=device, disable_exllamav2=True ) model.eval() # Set the model to inference mode return model model_loaded = False # Attempt to load the model, catch any OOM errors try: model = load_gptq_model() model_loaded = True except RuntimeError as e: if 'CUDA out of memory' in str(e): st.error("CUDA out of memory while loading the model. Try reducing the model size or restarting the app.") st.stop() else: raise e if model_loaded: # Display GPU memory information after loading the model gpu_memory_after = get_gpu_memory() st.write(f"GPU Memory Info after loading the model: {gpu_memory_after}") col1, col2 = st.columns(2) with col1: user_input = st.text_input("Input a phrase") with col2: max_token = st.number_input(label="Select max number of generated tokens", min_value=1, max_value=512, value=50, step=5) # Generate button if st.button("Generate the prompt"): try: prompt_template = f'USER: {user_input}\nASSISTANT:' inputs = tokenizer(prompt_template, return_tensors='pt', max_length=512, truncation=True, padding='max_length') inputs = inputs.to(device) # Move inputs to the same device as model # Generate text using torch.inference_mode for better performance during inference with torch.inference_mode(): output = model.generate(**inputs, max_new_tokens=max_token) # Cut the tokens at the input length to display only the generated text output_ids_cut = output[:, inputs["input_ids"].shape[1]:] generated_text = tokenizer.decode(output_ids_cut[0], skip_special_tokens=True) st.markdown(f"**Generated Text:**\n{generated_text}") except RuntimeError as e: if 'CUDA out of memory' in str(e): st.error("CUDA out of memory during generation. Try reducing the input length or restarting the app.") # Log the detailed error message with open('error_log.txt', 'a') as f: f.write(traceback.format_exc()) else: # Log the error and re-raise it with open('error_log.txt', 'a') as f: f.write(traceback.format_exc()) raise e # Display GPU memory information after generation gpu_memory_after_generation = get_gpu_memory() st.write(f"GPU Memory Info after generation: {gpu_memory_after_generation}") st.write(f"The following is the distribution of model (in case n GPUs > 1): {model.hf_device_map}")