Spaces:
Paused
Paused
Commit
·
5f5b726
1
Parent(s):
2280c62
Update app_v2.py
Browse files
app_v2.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
from transformers import AutoTokenizer
|
| 3 |
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
|
|
|
|
| 4 |
import os
|
| 5 |
|
| 6 |
# Define pretrained and quantized model directories
|
|
@@ -10,29 +11,27 @@ quantized_model_dir = "./Jackson2-4bit-128g-GPTQ"
|
|
| 10 |
# Create the cache directory if it doesn't exist
|
| 11 |
os.makedirs(quantized_model_dir, exist_ok=True)
|
| 12 |
|
|
|
|
|
|
|
| 13 |
# Quantization configuration
|
| 14 |
quantize_config = BaseQuantizeConfig(bits=4, group_size=128, damp_percent=0.01, desc_act=False)
|
| 15 |
|
| 16 |
# Load the model using from_quantized
|
| 17 |
model = AutoGPTQForCausalLM.from_quantized(
|
| 18 |
-
|
| 19 |
use_safetensors=True,
|
| 20 |
strict=False,
|
| 21 |
-
model_basename='Jackson2-4bit-128g-GPTQ',
|
| 22 |
device="cuda:0",
|
| 23 |
trust_remote_code=True,
|
| 24 |
use_triton=False,
|
| 25 |
quantize_config=quantize_config
|
| 26 |
)
|
| 27 |
|
| 28 |
-
model.save_quantized(quantized_model_dir)
|
| 29 |
-
|
| 30 |
|
| 31 |
# Load the tokenizer
|
| 32 |
tokenizer = AutoTokenizer.from_pretrained(quantized_model_dir, use_fast=True)
|
| 33 |
|
| 34 |
-
model_for_inference = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir)
|
| 35 |
-
|
| 36 |
# Starting Streamlit app
|
| 37 |
st.title("AutoGPTQ Streamlit App")
|
| 38 |
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
from transformers import AutoTokenizer
|
| 3 |
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
|
| 4 |
+
from huggingface_hub import snapshot_download
|
| 5 |
import os
|
| 6 |
|
| 7 |
# Define pretrained and quantized model directories
|
|
|
|
| 11 |
# Create the cache directory if it doesn't exist
|
| 12 |
os.makedirs(quantized_model_dir, exist_ok=True)
|
| 13 |
|
| 14 |
+
snapshot_download(repo_id=pretrained_model_dir, local_dir=quantized_model_dir, local_dir_use_symlinks=False)
|
| 15 |
+
|
| 16 |
# Quantization configuration
|
| 17 |
quantize_config = BaseQuantizeConfig(bits=4, group_size=128, damp_percent=0.01, desc_act=False)
|
| 18 |
|
| 19 |
# Load the model using from_quantized
|
| 20 |
model = AutoGPTQForCausalLM.from_quantized(
|
| 21 |
+
quantized_model_dir,
|
| 22 |
use_safetensors=True,
|
| 23 |
strict=False,
|
|
|
|
| 24 |
device="cuda:0",
|
| 25 |
trust_remote_code=True,
|
| 26 |
use_triton=False,
|
| 27 |
quantize_config=quantize_config
|
| 28 |
)
|
| 29 |
|
| 30 |
+
#model.save_quantized(quantized_model_dir)
|
|
|
|
| 31 |
|
| 32 |
# Load the tokenizer
|
| 33 |
tokenizer = AutoTokenizer.from_pretrained(quantized_model_dir, use_fast=True)
|
| 34 |
|
|
|
|
|
|
|
| 35 |
# Starting Streamlit app
|
| 36 |
st.title("AutoGPTQ Streamlit App")
|
| 37 |
|